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L. ABSTRACT

An implicit finite-difference scheme 1s used to solve the laminar
and turbulent boundary-layer equations for perfect gases and reacting
gas mixtures in chemical equilibrium, The formulation of the boundary-
layer equations neglects transverse curvature effects, and the equili-
brium chemigtry model assumes that the element composition across the
boundary~layer is constant. Thus, injection of a foreign gas at the
wall boundary cannot be considered,

The numerical procedure is applied to both internal and external
f£low problems and the results are compared with experimental data and
other numarical solutions where these data were available, The solu-
tions for laminar and turbulent flows of perfect gases and laminar
flow of an equilibrium gas without mass transfer are in good agreement
with experimental data and/or other numerical solutions. For the case
of mass transfer at the wall, the numerical solution is in good agree-
ment with experimental heat-~transfer data, but the velocity profiles
and skin-friction predictions are not in good agreement with the
available data, Additional experimental data are needed to assess the
accuracy of the numerical solutions with mass transfer effects,

The experimental data which were available for turbulent flows of
an equilibrium gas were in a range of pressure and/or temperature where
the effects of equilibrium chemistry are not large., With the exception
of an integral method of solution for turbulent flow of an equilibrium
gas in nozzles ~ which failed to converge for the problem considered =
other numerical methods were not available for comparison, However,
the solutions obtained are in good agreement with the limited data

available,
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V. INTRODUCTION

The existing literature on the numerical solution of the laminar
boundary=layer equations for two-dimensional and axisymmetric flows is
extensive, A recent review of the most commonly used techniques for
golving the laminar boundary-layer equations for non=equilibrium,
equilibrium, and non-reacting chemistry is given by Blottner [ref, 1].
Kline et al, [ref, 2] present a similar review of the prediction
methods used for the solution of the incompressible turbulent boundary-
layer equations., Examples of the more recent solutions of the tur~
bulent boundary=layer equations are the reports by Harris [ref, 3] and
Pletcher [ref. 4].

The 4implicit finite-difference scheme of the Crank-Nicolson
[ref. 5] type has been developed extensively by Blottner [refs. 1, 6,
7] and by Davis [refs. 8, 9, 10] for a wide range of laminar boundary-
layer flows., This method of solution has been demonstrated to be
accurate and stable and does not require an excessive amount of com=
puting time. This type of finite~difference scheme has been used by
Harris [ref. 3] to solve the turbulent boundary~layer equations for
non-reacting gases, Harris considered mass transfer at the wall and
the laminar-turbulent transitional regieme. Cebeci et al, [refs. 11,
12, 13] used an implicit finite-difference scheme to obtain the solu~
tion of the turbulent boundary-~layer equations, However, the numeri~
cal procedure used by Cebeci differed considerably from the Crank=-
Nicolson type scheme. The solution of Pletcher used an explicit
finite-~difference calculation procedure based on the DuFort-Frankel

[ref, 14] scheme., The turbulent solutions of Cebeci and Pletcher also




considered only non-reacting chemistry,

In the references cited above, the authors have considered only
external flows, Elliott, Bartz, and Silver [ref, 15] have developed
an integral method of solution for predicting turbulent boundary-
layer flows in rocket nozzles. Boldman et al, [ref. 16] have applied
the method to predict turbulent flows in supersonic nozzles, Eden=
field [ref. 17] has extended the method to predict turbulent flews in
hypervelocity nozzles in which the gas-was considered to he in chemi~-
cal equilibrium,

For the lower Mach number perfect gas cases considered by Elliott,
Bartz, and Silver and by Boldman, relatively good agreement between the
predictions and the experimental data for the heat-transfer distribu-
tion was obtained, Edenfield found that the method did not predict
the boundary=-layer displacement tliickness accurately downstream of the
nozzle throat and falled to converge for local Mach numbers of about
16, Thus, for hypersonic nozzle flows, a limit exists for the use of
the integral method, Other disadvantages of the integral method are
the amount of empirical data needed and the number of adjustable para-
maters which strongly influence the results of the predictions,

As a result of the excellent agreement between experiment and
theory which has been obtained by Blottner and Davis for both reacting
and non-reacting chemistry for laminar boundary-layer flows and by
Harris for non-reacting turbulent flows using the Crank=Nicolson type
implicit finite-difference scheme, this method of solution was se~
lected for the present investigation. Both laminar and turbulent flows

of perfect gases and mixtures of perfect gases in chemical equilibrium



are considered for flat plates, wedges, two=dimensional or axisym-
metric blunt bodies and nozzles. Mass transfer is considered for the
case where the injected gas is the same as that of the external flow,
The primary emphasis has been to obtain solutions for high Mach number
flows having strongly favorable pressure gradients and highly cooled

walls,




VI. ANALYSIS

The equations of motion for laminar or turbulent flow of perfect
gases and equilibrium gas mixtures are developed in Levy-Lees vari-
ables,and.expressed in the general parabolic form necessary for the
implicit finite-différence solution procedure employed by Blottner
[ref, 6] and by Davis [ref. 8].

Semi-empirical expressions for the turbulent eddy viscosity are
presented for the cases of a solid wall and a porous wall, The
finite-difference scheme is developed and the procedures employed for
determining the initial profile data, and the specification of edge
conditions are discussed. Definitions of the boundary~layer para-

maters which have been employed are also gilven,

6.1 Governing Equations

The governing equations for laminar or turbulent boundary-layer
flow of an arbitrary gas in thermodynamic equilibrium or of a perfect
gas are presented in dimensional variables and transformed to Levy~-
Lees variables, The rate of mass transfer at the wall boundary for
porous-walls is assumed small in comparison to the boundary-layer mass
flow and normal gradients are negligible. The boundary-layer thick-
ness is assumed to be small in comparison to the body radius of curva-
ture and centrifugal forces are neglected. The coordinate system is

shown in Figure 1.

6.1.1 Laminar Boundary-Layer Conservation Equations

The conservation equations for laminar boundary=-layer flows of a

perfect gas or of a chemically reacting gas mixture in equilibrium are



developed in this section. For a multicomponent gas mixture, the lam-
inar boundary-layer equations are expresged in dimensional variables

as; (see Hirschfelder et al, [ref, 18]):

Continuity
'a‘;;kv.x*::*:I ap*v*r*j
%t * L
3 x 3y
where
j = 0 for two dimensional flow
J = 1 for axisymmetric flow
Momentum
*
* * d?P * .
* % * % % .
o*u 9 u* +pov 9 u* - - : + 9 " 9 u*\ (2)
99x 3y d x 2y 3y J
Energy
sxan®  keapt xdP 5 ot Yl
pu —— =y — +u == (3
3 x 9y d x 'y 3y
wvhere
* ISS.
* * 5 *k %k .
q --kf—-—T*-i- ) hy 3, (4)
3y i=1
and -
T*
* *
E I§SM1M . 5% L 57 -
i Pr =2 1) * * *
=1 M 3y T 38y

i ——— s A e



Species

3 ¢ 3 c
* % * * Lk
ot —£ 4+ o —L . - 2 o)) (6)
9 x dy 3y

Agsuming the gas mixture to be in local chemical equilibrium, the spe~
cies composition is a function of the pressure, temperature, and con=-
" centrations of the chemical elements, The diffusion equation for the

jth chemical element is obtained from equation (6) after multiplica=-

tion by ai -3-— and summing over all species, ISS, as
1 .
I8s 3
% % 9 3 * * j_ 3 M
pu —-9-;-+pv c*.__ = ) ai;rJi @
9 x 3y 9y (i=1 1
where
IS8 3
cj ai %— cy (8)
i=1 1

Assuming that the element compogition, cj, renains constant across the
boundary-layer, the conservation of energy, equation (3), can be ex~
pressed in terms of total enthalpy in the same general form as that

for a perfect gas, If t.::l is constant, the heat transfer can be ex-

pressed as
*
* * 3 T
q =« K ——* (9)
3y
where
T*
% ISS ISS M, M o X L
% * *
K -kf-%r—- Y hy ¥ .}_J.Lij_..%__:_ (10)
£4m1 L |qe1 WP a1 T



Using the definitions,

*2
* * u
H =} +—2- (11)
* * % &
h =h (P, T) (12)
and the normal momentum equation
3"
<=0 (13)
3y

the heat transfer,equation (9), can be expressed as

« % aH* %3 *
Q= - %— ——; - u -—g-*- (14)
r
3y ay
where
* %
C, U
Pr = P* _ (15)
K

*
Multiplying equation (2) by u and adding to equation (3) with the use

of equation (14) gives

%3 H  xk3E . 0 uwroam . *. 1) %34
pPu xtov * " *%{-‘.*"'“[1"1"5)“ = ae
I x dy 3y 3y 2y
The conservation of energy as expressed by equation (16)Ahas the
same form as that for a perfect gas, but for an equilibrium gas the
thermodynamic and transport properties are determined for the specified
gas mixture, This approach is limited since the element composition is

not strictly constant across the boundary layer., This approach cannot

be used for injection of a foreign gas, since the element composition




is not a constant across the b9hndary layer, Therefore, the case of
mass transfer into the boundary layer is restricted to injection of

the same equilibrium gas mixture or perfect gas as that at the outer
edge of the boundary layer,

For high Reynolds number flow, the conservation equations are non=~
dimensionalized by variables, given by Van Dyke [ref., 19], which are of
order one in the boundary layer. The nondimensional variables are de-
fined in the list of symbols, The conservation equations in non-dimen=~

sional variables have the same form as the dimemsional equations and

ared
Continuity
9 putj agpvrj -
Y + 5y 0 17)
Momentum
dp
Ju Ju e 9 ou
pu == + pov 5y - " % + 3y [u 3;} (18)
Energy
pu ox *oev Jy oy Er oy + u[l Pr) u 33 (19)

For a perfect gas,
Pr = constant
%
¢, = constant
P
h =T (20)

and the viscosity may be expressed by Sutherland's law




U = =—— T (21)

where

*
¢ = 198,6°R for air

or by a simple power law

(]

u=T (22)
The equations of state are:
P lii oT for a perfect gas (23)
and
Ro )
Pwp—=rT for an equilibrium gas (24)
M cp

The thermodynamic and transport properties of an equilibrium gas
are functions of the chemical composition and internal energies of the
species in the gas mixture, and have been determined using a modifica-
tion of the computer program developed by Lordi, Mates, and Moselle
[ref, 20], A description of the modified program is given in Appendix
A,

6s1.2 Laminar Boundary-Layer

Equations Expressed in Levy-Lees Varisbles

A more convenient form of the conservation equations for numerical




golution is obtained by the introduction of a stream function defined

as

/

o(x,y) = 202 £¢E,m) (25)

where £ and n are the Levy-Lees transformed coordinates:

X
E(x) = j Pe U, Mg 2 dx (26)
[+]
by Y, 4
n(x,y) = -(;-—)m— ] p/pe dy 27
E ©

At the stagnation point of a blunt body the boundary~layer equations

have a removable singularity. As £ + 0, the limiting process gives

due x2 (3+1)

B " T Ve 2GFD 28

P x(j+l) du v
=) e
n(x,y) = —(—z-g-)ﬂé—;;- %: dy (29)
]

or

£ gy (30)
pe

The differential operators expressed in the £,n coordinate system

10



arel

2 212 ., 2
™ PeY et 3t (31)
and
5 pu -
G = g o (32)
oy (25)172 mn
Using equations (25), (31), and (32) gives
j PV =P, U, U, r ——7—+ (25)1/2 + (25)1,2 n, F
o)t x
or
2¢ fE +V+£=0 (33)
where
Ve u r + (34)
P Yo Mg 2 (25)
At the stagnation point,
V= o _ , (35)

du 1/2
Ee Ha dx (jﬂil

Differentiation of equation (25) with respect to y using equation (32)

givest

£' = u/ue ' (36)

1




Evaluation of equation (18) at the outer edge of the boundary-

layer gives the pressure gradient as:

dPe due
T " Pele: @7

With the use of equations (31) - (37), the conservation equations

for laminar boundary layers are; (Blottner [ref, 7]):

Continuity
25F£+V'+F-0 (38)
Momentum
p
2F F, + VF' = B[;—E - F2] + (CF")" (39)
Enerey
2EF gg+Vg' --g-;g"'-l-%;g' +
“2 1 2 1)
ﬁ-;- [1 - 5;] [C'F'F + CF'® 4 CF"] + CFF' [1 - 5,;-] (40)
where
and
B = %:—;‘i : (41)
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or at the stagnation point

8 = ?-1Fi (42)

6.1.3 Turbulent Boundary-Layer Conservation Equations

In this section, the conservation equations for turbulent flow

and the semi~empirical formulations of the eddy viscosity model and
the eddy thermal conductivity are presented,. Following the usual
practice, the symbols H, P, p, u, and v are to be interpreted as time
averaged properties, The nondimensionalized form of the conservation

equations are:

Continuity
9 urj 3f(ov + p'v") qu
Spurl . £ =0 (43)
9x y
Momentum
u g v+piv) D u‘?':g'*"?— o wwT (44)
Pu 3% e e oy pe e dx Jy H oy e
Energy

;4 story SH L2 (L 3H _ v -
rJuax-f-(pv~4-pv)ay ByE!'ay p v'H +u[1 oE (45)

The solution of equations (42)~(44) requires expressions relating

the Reynolds shear stress term ~u'v' and v'H' to the mean variables
u, v and H, These expressions are obtained by introducing an eddy
*

*
viscosity, e+ s and an eddy thermal conductivity, Ex? where it is

agsumed that

13




~u' v =g == (46)
3y
and
*
*
-yt H'* - e: 25; (47)
oy
or
.
e —— c* e+ *
* %
e R 1 (48)
Pr
t 3y
where
.* - .
* 4
ep €
Prt = < (49)
®k

The value of the turbulent Prandtl number is taken to be 0.9 for both
perfect gases and equilibrium gas mixtures.

*
The eddy viscosity, e+ » is evaluated using the concept of a two-

layer eddy viscosity model consisting of an inner law, eI*, valid near
the wall and an outer law, e: s for the remainder of the boundary layer,
This procedure has been employed successfully by a number of authors;
for example, Cebeci, Smith, and Mosinskis [ref., 12], and Harrisg [ref.

3]s These authors used expressions for the inner eddy vigcosity law

which were based on Prandtl's mixing-length concept stated as

o 2 s *
gy = 3 —1*- (50)
3y

N .
whare £ 1is the mixing-length, In the present solution of the turbu-

lent boundary-layer equations, a number of expressions based on equation

14




(50) have been used, and in addition to these models, an eddy viscos-—

ity based on the Boussinesq [ref., 21] relation

+*

% % i | u"

T =y 14.__*... — - (51)
u 3y

has been used for the non-porous wall cases, For the porous wall case
the eddy viscosity expression considered was based on equation (50),

These expressions are given below,

A, _Expressions for the Inner Eddy Viscosity Law

for no Mags Transfer at the Wall
The eddy viscosity laws based on equation (50) have been derived
by analogy with Van Driest's proposal for the mixing~length, Van
Driest [ref, 22] considered Stokes' flow for an infinite flat plate
with periodic oscillations in the plane parallel to the plate to ar-
rive at an expression for the mixing length, The expression given by

Van Driest is

¥ - k, y*[l - exp(y*/A*)] (52)
or using law of the wall coordinates

2 - ky y*[l - exp(—y+/A+)] (53)

where

15




By correlation of experimentally determined velocity profiles for

incompressible'turbulent flows in tubes the constants were found to be

k) = 0.4
and
At = 26

or

e -1/2

T

A" - 260" [ (54)
p

Patankar and Spalding [ref. 23] proposed the shear stress at the
* *
wall, T, in equation (54) be replaced by the local value t . The

*
expression for A using this proposal is

* Kk, K -
A = 26v (t /p) 1/2 (55)
The conservation of momentum, equation (44), for an incompressible
two-dimensional flow can be expressed as
ar* dPe
ay dx

for the region near the wall, Integration of equation (56) and sub-

*
stituting into equation (55) gives A as

16



-1/2

%* *
* % Tw * dPe
A =26y |4 L2 (57)
p p dx
oY
At = 2601 - pHyT7/2 (58)
where
ar”
% % -
P m e =20 wp? (59)
dx

Cebeci and Smith [ref., 11] note that the term in brackets of equa-
tions (57) and (58) may become negative for accelerating flows leading
to the square root of a negative number, To avoid the numerical dif-

ficulty Cebeci and Smith replaced equations (57) and (58) by

* % ~1/2
* * Tw * Pe
A" w26y |- 4 Tl (60)
p p dx
and
=1/2

- 26[|1 = pty |] (61)

As a result of the difficulties encountered using equations (57),
(60) and (61), equation (57) was arbitrarily modified by replacing the

pressure gradient with the absolute value giving

17




o11=1/2

*
* % Tw * dPe
A = 26v —;k--l-x; — (62)
p p |dx

In a more recent publication, Cebeci [ref. 13] suggested that the
value of y+ in equation (58) be replaced by a constant value of 11,8,
This is an experimentally determined value for the laminar sublayer

thickness and gives

~1/2

At = 26[1 - 11.801) (63)

Cebeci [ref, 13] does not indicate a procedure for the case of a nega=-
tive square root which oceurs for PT > 1/11.8,

Reichardt {ref.24] considered the incompressible continuity eq:a-
tion for the fluctuating velocity components to demonstrate that €y
varies with y*3 and presented an expression which was obtained by curve

fitting experimental data of £low in pipes. Reichardt's expression for

the inner eddy viscosity is

N y* * y* )
* u u

eI =y 04d|—3 £. 11 tan h £
v 11 v

(64)

B, Eddy Viscosity Expression for the Case of a Porous Wall

For a porous wall with pressure gradient, the conservation of
momentum, equation (44), is approximated for the region near the wall

as, (Cebeci [ref, 13]):

18



L *

* v dP
dt w %
dy v dx

Solving equation (65) for the shear stress gives

dP* ® * *

* Vo * *. Vo %

T --%-Y-; exp-%y -1 +‘rwexp-:-:-y (66)
dx vw v, v

The damping constant, Af, for the porous wall is expressed as

~1/2
o+
= 26 {- 3; [exp(v:y+) -1] + exp(v:y"') 67

v
W

Af

Assuming that y+ at the edge of the laminar sublayer for the case of a
porous wall is approximately the same as that for a flat plate without
mass transfer, Cebeci [ref, 13] used a value of 11,8 for y+ and ex~
pressed A+ as
-1/2
+

A" = 26 {- L: [exp(11.8 v)) - 1] + exp(11.8 v (68)

v
W

For the case of no mass transfer, equation (68) reduces to equation

(63), and for a porous flat plate becomes
A" = 26 exp(-5.9 v1) (69)

The nondimensional form of the inner eddy viscosity laws for no

mass transfer at the wall are:
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Van Driest [ref, 22]

+
ey ™ x111 ~ exp{=- X

3 IF'I

aa

1/2

- {F|

e ']
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(70)

(71)

(72)

(73)




Cebeci [ref, 13]

2
+ ol
ey = X1 - exp|- <7 |F?] (74)
A
where A+ is given by equation (63), In equations (70)=(74), xl and x2
are defined as:
X ki Y2 p2 u? as)
] 5
. Erp M (2F,)1’2
and
26u JSVD
Reichardt [ref, 24]
; 0 1/2 ; 0 1/2
+ 0,4 £, ' f.
i —u—z T - 4,4 tan h T |5 (77)
VD ol R )

The inner eddy viscosity law for the case of mass injection is (Cebeci

[ref, 13])

+

2
+ +
ey = %{1 - exp[- -‘l-] || (78)
A

where A+ is given by equation (68) or equation (69).

21




C. Outer Eddy Viscosity Expression

The above expressions for the inner eddy viscosity have been em-
ployed in combination with the Clauser ocuter eddy viscosity as modi-

fied by Klebanoff [ref, 25] and is expressed in nondimensional form as

—y (79)

*
where Gk is the incompressible boundary-layer displacement thickness

* ye

Gk u

* " Sy J [1 T u ] dy (80)
a ” e

and v is Klebanoff's intermittancy factor

-1
6
Cy.= {1 4 5.5[%]. _ .. (8L)

The inner eddy viscosity, ez, applies from the wall outward to the
point where eI - e:. For turbulent flow the enthalpy, viscosity, and
equations of state are given by equations (20)-(24), and the thermo~
dynamic and transport properties for an equilibrium gas are determined

by the method given in Appendix A,

6.1.4 Turbulent Boundary-Layer
Equations Expressed in Levy-Lees Variables

Proceeding in the same manner as for the laminar boundary-layer
equations (Saection 6,1.2), the equations for turbulent flow are ex-

pressed in Levy-Lees variables ag: (Cebeci, Smith, and Mosinskis
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[ref. 12]):

Continuitx
2E FE +VI+FmuQ
Momentum
pe 2 +.
2t P FE + Vv Fn = g ;—-- F*] + (C(L + ) FY)!
Egergy

2€ Fg, + Vg' = %;{1 P -—-gf, ] g"
t

+cr'? + CF"] + CFF’[l - %;J

where

-on LJ
v.-———-z-i—- f'n &4 v+ X

3 X
Pg Ug Mo T (28)

or at the stagnation point
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-
V- Ly ioy (86)

" 172
Py, Too ““]

e dx

6.1.5 Boundary Conditions for the Governing Equations

The boundary conditions at the wall, n = 0, and at the outer edge

of the boundary-layer, n = Ngs for equations (34)-(40) and (82)-(86)

ares
Hw hw
atn=0: F=0;g " " Ve Vw
e e
and (87)

at n = ng* Fol gnl

6,2 Numerical Solution Procedure
The conservation equations for laminar or turbulent flow have been
solved using an implicit finite~difference scheme, The numerical method
is the one employed by Davis [ref, 9] and requires that the governing

equations be expressed in the general parabolic form

"+ Alw' + A2w + A3 + A4WE =0 (88)

where W 18 the dependent variable and the coefficients are functions of
£, n and W,

In the followiné sections, the conservation equations are ex-
pressed in the general parabolic form, equation (88), and the finite~-

difference scheme is deécribed.
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6.2,1 Standard Parabolic Form of the Governing Equations

The governing equations are expressed in the form of equation
(88) for a perfect gas or an equilibrium gas mixture ast

Momentum

1 1 -
F' o+ AlF + A2F + A3 + A4FE 0 (89)

where

p
e
A3 8 ;—VAO

A

% = 2£F/Ao

Ao 18 defined for laminar and turbulent flow as
Ao = C (for laminar flow)

Ab - C (1 + e+) (for turbulent flow)

and
& =AlC
Energy
g" + Alg' + A8 + A3 + A&gE = 0 (90)
vhere
Al'%"*'i—:-yr
) ()
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2
u ] 1 12 1
A, = -l'i'g [1 - -%'-;} -9-:- FF! +§— +_-E-E— (for a perfect gas)
e CA A A
o o °
“i ct . % 2
A, m=2¢C ||==+==| FF' + F'“ + FF"|{/A_ (for an equilibrium gas)
3 He 1 o] C1 o
A, =~ 25F/A°
A = [ (for laminar flow)
(] Pr
Ao - -g;[l + e+ %E—] (for turbulent flow)
t
b T
and
1
¢, =1-%
Continuity

The solution of the continuity equation is determined by numerical

integration of the expression

n

e
V- vw- I (2¢ Fg + F) dn (91)
o]

after each iteration of the momentum and energy equations., The inte-~

gration is performed using the trapizoid rule,
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6,2.2 Derivation of the Finite-Difference Solution Procedure

The finite-difference scheme used to solve the boundary~layer
aquations is an implicit method of the Crank-Nicolson type [ref. 5],
which has been applied successfully by a number of authors; for exam-
ple, Davis [ref,9], Blottner [ref, 1] and Harris [ref, 3].

The boundary layer ig considered as a t;etwork of nodal points with

a varying step size in the normal coordinate direction as shown sche=-

matically in the figure below

m m-+i
"4 — Ag -
‘ l— (] —A)AE AAE —
—F ' —— N+l
A7,
f n
n-i
i -
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For convenience, equation (88) 1is expressed at (m,n) and (m+l,n)

as
n
oW n
{?E] -Gm (92)
m
and
J e
= G (93)
o+l m+l

If it is assumed that the dependent variable is known at the

peints (m,n) and (m+l,n), Taylor series expansions for w;+(1_x) gives

aw) ™
Warqaeny = Vg * Q1) AE[‘:SEL

2 .2 (.2 \®
Lm0 A [a w)
m

a-n? a3 (o%]"

+ dooot (94)
3! 3
log3)_
and
n
W
w -yt - AAE[-—]
mh(1-2) il 3E) 41
n n
2 2 3 3 3
08 1 ) 1
where

0 <X <1
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Noting that

2.\® 2.\" 3.\"
W 3 W "W
14
m m

and solving equations (94) and (95) for W2+1 gives

n W aw "
W 'Wnn;"'“ El- ) [E]m-:-x[-&-]m;l

2 21"
+5 - zx)[a—-‘}) + 0(8g%) (96)
aE

m
or using equations (92) and (93),

0 n n
%) -wm+A§I(1-x) Gm+)t

n
e} Gpe1]

2 . n
+ Ag— - 21){%%]] + 0(ag>) 7
m
Davis [ref. 9] approximated aquation (97} as

un

m+l

n n "'-
- w; +2E{(1 = 2) G+ 2 Gmﬂ;. (98)

and evaluated the Ai in equation (88) at the pointé (m¥l,n)e, Following
Davis' formulation, the normal derivatives in equation (88) are re-
placed by Taylor series expansions for varying step sizes in the n di-

rection at the point mtl,n as
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An

=1 +1
W2, = e
whl ~ An_(An_ + An ;) “mtl

Ann - Ann-l Ann Wn--l

Ann Ann-l m+l Ann_l(Ann + Ann+1) m+l

+

+ 0(an2) (99)
and
2 n+l 2 n
(w")n - w an  STSEEaSe—— w
m+l Ann(Ann -+ Ann—l) gyl § Ann Ann—l m+l
2 n-1 2
+ W + 0(An") (100)
Ann-l(Ann + Ann-l) m+l
Evaluating the Ai at mtl,n and letting
.
Wl wm
n
and
n
WZ = Wm+1
n

gives upon substituting equations (99) and (100) into equation (98)

AnW +an +C W =D3;2<n<N-1 (101)

where

n
A = A
n " Bn__ (An_ +&n__0)
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F 2 + Al (Ann - Ann—l) A4

n n
B_ = — A | A+
n L An_ An__. 2, AE
2 + Aln A"n-l
C = — A
n Ann(Ann +An__,)
and
Aﬁn Wln
- 1" ) - -
Dn - [wl +A1 Wl +A2 Wl 1 (2 =1) A3 + AT
n n n n m n
Assuming that
W =F W + F (102)
2n n 2n+l n

is valid throughout the boundary-layer (Richtmyer [ref, 26]), then

2] is given by
2
n~l

W =

+ F (103)
2
n-1

Bl ¥ n=1
n

Using equation (103) in equation (101) and solving for Wé and
n

comparing with equation (102) gives

-C
- ——-——r}——_
En B + A E (104)
n n n-l
and
Dn - Ah Fn-l
w3 F¥AE (105)
n n n-1
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The values of E1 and Fl are determined by the boundary condition

for W,

6,2.3 Spacing of Node Points in the Normal Coordinate Direction

The .finite-difference solution procedure has been developed for a
variable spacing of the node points in the normal (n) coordinate direc-
tion, This permits a close spacing of points in the region near the
wall where the variation of fluid and dynamic properties is greatest,
The procedure employed is that given by Cebeci, Smith, and Mosinskis
[ref, 12},

Using this procedure, the ratio of the adjacent intervals is a
constant expressed as

Ann
-1

The distance to the nth point measured from the wall boundary is

given by
where
ny =, ;- 1 (208)
ki -1

N is the number of strips in the boundary-layer, and Ne is the location
of the boundary-=layer outer edge,

The values of the constant k for laminar or turbulent flow were
deternined by numerical experiments., A number of solutions were ob~

tained for laminar and turbulent boundary layer f£lows at supersonic

32




conditions consider;ng both adiabatic and cold wall cagses. The value
of k was varied over the range from 1 to 1,5 with N, varied from 4 to
12 for laminar flow and from 75 to 200 for turbulent flow, The results
of these test cases were compared with experimental data to determine
a value of k which gave good agreement with experimental data and
where the solution showed little change for different values of Nge

The values selected were:

k = 1,04 and n, = 6 for laminar flow
k= 1,09 and ne = 100 for turbulent flow

The above values corraspond to a value of N = 100 in equation (108).
Similar tests were made varying N from 50 to 500, An N of 50 was
found to be unsatisfactory for most cases, but values of N greater than

100 did not improve the solutions which were ootained.

6.2.4 Convergence Criteria

A suitable convergence test may be established for laminar
boundary-layer flows by comparing F& at successive iterates of the
golution, This type of convergence test was employed by Davis [ref,

9] and Cebeci and Smith [ref. 111,

For turbulent flows, Cebeci and Smith found that a second require=-
ment based on successive iterates of the boundary-layer displacement
thickness was neceasary to obtain satisfactory solutions. They con=-
tinued the iteration procedure until both tests were satisfied.

For the present calculations provisions were made to establish

convergence by comparison of successive iterates of both F& and g& or
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by comparing successive iterates of both F and g at all points in the
boundary layer., The convergence test are expressed as

Derivative Test

and

, (kH1)
By
== <=

|
o

Function Test
L o~ ]

F (k+1)

i
Hh

- (k)

and

g (k+1)

2

n

where k is the iteration number and €4 and €g are prescribed values,

The function test with € ™ 0.01 and the additional requirement that
the number of iterations at the new location be two or greater was
found to be satisfactory for both laminar and turbulent flows., A
value of €4 " 0.001 was used with the derivative test, but this test
is in general not recommended for turbulent boundary-layer calcula-

tions,
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6.3 Specification of Body Geometry

The geometry of a given configuration is considered as a series

of segments of fourth order and requires that the coordinates, z, x,
and r be given in tabular form. Since transverse-curvature effects
have been neglected in the governing equations, provisions have not
been made to distinguish between different body sections. Thus, some
inaccuracies are introduced in regions near the intersection points of
different contours, For problems requiring a specified pressure
and/or a wall temperature distribution, these data are entered in tab-
ular forn at the same points as the geometry data. The temperature is
entered in °R and the pressure is given as_P/Poor P/P;.

To insure accurate interpolation and/or differentiation of the
temperature and pressure data in regions of large gradients, it is nec-
essary to have a close spacing of the coordinate data.

For nozzles, at least 30 points should be entered in the throat
. reglion, and for blunt bodies, at least 50 points should be entered
for the nose section., A maximum of 500 points may be tabulated, and
the minimum number permitted is 5., Best results were obtained when
the maximum ratio of adjacent step sizes in z were not greater than
1.25,

The body shapes which have been considered are blunt bodies,

wedges, flat plates, and nozzles.

6.4 Fluid Properties at the Outer Edge of the Boundary-Layer

In the present method for solving the boundary-layer equations,
the effects of mass entrainment of the outer inviscid vortical stream=-

line into the expanding boundary=layer on a blunt body is neglected.
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Therefore, the edge conditions may be specified by conditions on the
body surface for the inviscid flow of the gas, The procedures em=~
ployed for specifying the outer edge conditions for the different geom=

etries and gas models is discussed in the following sections,

6.4,1 Axisymmetric Nozzles

The edge conditions for nozzle flows of a perfect or an equili-~-
brium gas may be specified by assuming a one-dimensional expansion or
the expansion can be determined for a specified pressure distribution
where the pressure is given in tabular form as indicated in Section
6.3, The procedures employed for the different cases are discussed

below,

A, One~Dimensionsl Expansion of a Perfect Gas

For a one~dimensional expansion of a perfect gas, tables of Mach

numbers and the corresponding area ratios are computed within the

boundary=~layer computet program using the relation

1
2{y=1)
1+ 1‘5-1- G
l -
A/At -5 ) (109)
2

at intervals ;f 0,01 in Mach number for M < 2 and in intervals of 0.05
for M > 2, ’

After the above tables have been generated, the Mach number at
the nozzle exit is determined by five point iﬁterpolacicn in the tables

of area ratio and Mach number with the area ratio as the independent
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variable. The exit Mach number is denoted by M .
The free-stream pressure, temperature, velocity, density, vis-

cogity, and Reynolds number are then computed using the relations

&
P* - %o (110)
® - ¥/ (y=1)
[+ 3]
T*
* o
T " 1+ l‘z-'}- > (

* : *
U =M /yRGAS T, (112)

P*
* o
pm- * (113)
RGAS Tw
F* Yt (o ‘3/2
ref T
* ok . hod (114)
Yo uref T* + * *
1l - c ’I.'refl
and
k % _%
P, Um L
Re = - (115)
[-.] uw
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* * %
where p s T and L are reference values of viscosity, tempera-
refl refl
ture and length,
Corresponding to the points in the geometry arrays, tables of the

edge pressure and velocity are computed in nondimensionalized form

using the expressions

P = (116)

" A -
u, /(To Te)z (117)
where
* * %
Pe Pe Pe
P % =% E'E" 2 p* (118)
ref pco Y w o
* *
To To qp To
T° - = % " N 5 T* (119)
ref © (Y" ) Mw ©
To
T = (120)
e y=1 .2
1+ 5 ML

and ML is the local Mach number determined for the area ratio at the
given point in the geometry arrays,

At a local solution station x = x, + Ax, Pe, u, and ML are deter-

1

mined by interpolation, and Te, Pa and H, are computed using
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2
Te 'l‘° - ue/2 (121)

P
el &
Pa y-1 T (122)
e
M, - l+c Te3/2 (123)
T +c
or
0
Mo Te (124)
where
D* P*
e e
pe = * --;
Pref Po
and
%
Ne %
Yref
due
The velocity derivative'z;- is evaluated numerically,

B, Pressure Distribution Specified for a Perfect Gas Solution

For solutions where the pressure distribution is input to the
computer program, the outer edge conditions are computed in the same
manner as for the one-dimensional expansion solution with the exception
that the Mach number table is computed from the input pressure distri-

bution using

1/2
2 |p '?ET
ML- -Y—:i- ?; -1 (125)
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After computing the Mach number array using equation (125), equa-
tions (116)~(124) are evaluated using the local Mach number data cor-
du
responding to the given pressure distribution, and E;S is evaluated

numerically.

C._ One~Dimensional Expansion of a Reacting
Gas_in Chemical Equilibrium

" The boundary-layer edge conditions for the equilibrium gas case

were determined by the solution of the inviscid equations of motion
for the given mixture of perfect gases, The data which must be given

for the boundary~layer solution are:
* 4 N
A/A, M, U, F, and h

These data are tabulated for use with a table-look-up procedure, For
a one-dimensional expansion of the gas qixture, the area ratio is used
as the independent variable to determine the local edge conditions for
the given body geometry. Since the area ratio is not a monotone func-
tion over the length of the nozzle, it was found to be more satis-

factory to create a secondary expansion data set on a scratch unit ex~
pressed in terms of z or x, The locations of z and x were determined
for a given A/At by interpolation and the secondary data set was writ-

ten as unformatted records in the order
*
zy, Xy My U, 3 and ﬁ

This operation is performed within the boundary-layer program and re-

quires no additional preparation of the expansion data., In addition
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to the expansion data tape, a tape unit i3 required for the tables of
thermodynamic and transport properties of the equilibrium gas mixture,
These tables are written at constant ¥ with the temperature decreasing.
The data in each table are written as unformatted records in the form
(P; T*, ﬁ, 3, u*, cp, Pr). The expansion data and the tables of
thermodynamic and transport properties were obtained using two modified
versions of the computer program developed by Lordi et al. [ref, 20],
A description of thegse modifications are given in Appendix A,

After the secondary expansion data set has been written, local
values of M, U*; B and & are determined by interpolation with either
z or ¥ as the independent variable, With the local values of ¥ and §
as independent variables, the local values of T*, 3, p*, cp and Pr are
found by interpolation in the tables of thermodynamic and transport
properties, The nozzle exit conditions are taken as the free-stream
conditions and the reference conditions retain the same definitions in
the dimensional form with the exception of u:ef' The reference vis=
cosity for the equilibrium cases may be chosen arbitrarily and does
not necessarily correspond to the reference temperature and reference
pressure. The reference viscosity employed is computed using Suther-

land's law,

D, Equilibrium Gas Solutions with the Pressure Distribution Given
If the pressure distribution is given, the local value of T is

determined by interpolation in the given pressure distribution table,

With this value of ¥ as the independent variable, local values of M,

*
U and ﬁ are determined by interpolation of the data on the expansion
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data tape. It is not necessary for B to be a monotone function, The
remaining edge conditions are determined by interpolation in the
tables of thermodynamic and transport properties with % and ﬁ as the

independent variables as in paragraph C above,

6.4,2 Blunt Bodies
The solution of the boundary-layer equations for flows over blunt
bodies requires that the pressure distribution be specified, The re-
maining edge conditions are determined for a perfect gas or an equili-

brium mixture of perfect gases as discussed below,

A, Isentropic Expansion of a Perfect Gas Along

the Body Streamline From the Stagnation Point

For these solutions, the pressure distribution is entered in the
table as P/P; vhere P;'is the stagnation pressure behind a normal

shock expressed in nondimensionalized form as

The reference conditions are based on the flow properties ahead of the
bow shock. Si;ce the inviscid flow along the body streamline is isen=-
tropic, the edge conditions are computed in the same way as for a noz-
zle with ;he pressure distribution given and is described in paragraph
C of Section 6,4,1 above, It 1is noted that the expansion is from the

stagnation conditions behind the normal shock,
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B, _Isentropic Expansion of an Equilibrium Gas
Along the Body Streamline from the Stagnation Point

For this case, the equilibrium expansion data are determined for
the stagnation pressure and temperature behind a normal shock for the
given mixture of perfect gases and free-stream conditions, The free=-
stream and reference conditions with the exception of the reference
viscosity are determined by the fluid properties ahead of the bow
shock, The edge conditions at local points along the body are deter=~
mined in the same manner as for an equilibrium solution for a nozzle

with the pressure distribution given and is discussed in 6.4,1 D,

6:4.3 Wedges and Flat Plates

The edge conditions for wedges and flat plates are constants cor-
regsponding to conditions behind an oblique shock or the free-stream _
conditions respectively, The computer program for the solution of the
boundary~layer equations is suitable for both wedges and flat plates
if a perfect gas 1s considered. The solution of wedges for an equili-
brium gas requires modification of the boundary-layer computer program,
Thus, only flat plates are considered for equilibrium chemistry solu~
tions. The procedure for determining the edge conditions for a per-

fect gas and an equilibrium gas mixture is discussed below,

A. Edge Conditions for Flat Plates and
Wedges for a Perfect Gas Solution

The pressure, temperature, and velocity at the outer edge of the
boundary~layer are computed from the oblique shock relations and are

expressed in nondimensional form by the relations
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2y Mﬁ sinz o = (y=1)

P = (126)
y () v
(2y ¥ stn® 0 = (y-1)1[(v=1) ¥ sin’ o + 2]
T = (127)
€ (y~1) Mi (y+1)2 Mﬁ sin? o

and

[1 = 402 sin® o = 1) (y ¥ sin’ o + 1)]

u = (128)
(y+1)2 Mﬁ ain2 o]

The density and viscosity are computed using equations (122) and (123)

or (124)0

‘Bs __Flat=Plate Solutions for Equilibrium Gases

The solution of flat plates in an equilibrium gas requires the

ugse of the tables of thermodynamic and transport properties for the
given gas ﬁixtu;e (Appendix A). The free-stream pressure, temperature,
and veloci;y are input data to the boundary-layer computer program,
Using the free-stream_prgssure and temperature as independent vari-
ables, the values of h:, p:, u:, and c: are determined by the use of

interpolation in the tables of thermodynamic and transport properties,

6.4.4 Evaluation of the Longitudinal Coordinate-i

The coordinate £ is evaluated by equation (26) numerically using

a modified Simpson's rule (Davis [ref. 9]), and is expressed as



Etl ™" Sp T o, r o, w

m m m
+ 4, 23172 % uy ) (129)
m+l/2 ml/2  Tmdl/2
2]
+ 0 T p u 1 Ax/6
el "l Teruy e

where the gubscripts refer to the edge conditions at the points X0

Ax
xm,+ 5 9 and X + Ax resgpectively,

6,5 Solution for the Initial Profile Data

The equations governing the laminar or turbulent boundary~layer
flow of a perfect gas or an equilibrium mixture of perfect gases
reduce to a system of ordinary non=linear d;fferential equations at
x = 0, However, for fully developed turbulent flow, the eddy viscosity
cannot be evaluated at x = 0, for flat plates or nozzles, The limit-
ing form of the differential equations are employed at x = 0 for blunt
body flows. The procedures used to obtain the starting profile data

are discussed below,

6.5.1 Initial Profiles for the Solution
of the Laminar Boundary-Layer Equations
To start the solution of the boundary~layer equations, initial
guegses of the profiles for the dependent variables F, g, and V are
required, At the leading edge or stagnation point, the equations are
ordinary differential equations, and the initial profile data are

determined by an iteration procedure using the implicit finite~
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difference scheme develope& in 6,2.2,

Initial guesses are made for the profiles and for the first itera-
tion, These -estimates are denoted by the subscripts ( )1 and ("")c
respectively and the k+l iterate is denoted by the subscript ( )2.

The initial guesses of the profile data are assumed to have the

forms given below!

at n < T\e atn= ﬂe

- = - -n =
F1 Fc 1l e Fl 1
F! mF' = @ F!l = 0

1 c 1
F“ - Fll PO e-n F" - 0

b ¢ 1l

gl-gc-gw-l*(l-gw)l’l g =1

! o' = - ' ! -
g, = 8, 1l-8)F gy =0
5= G-e) 7 5 = 0

The solution of the continuity equation is assumed as
Vc - Vw = n

and the temperature distribution is computed from the g profile using

the definitions

0 =

'-1"-!

--h—-
h
e e
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Solving for 6 gives

[e2]
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+
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Tlofrs
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1
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0
]

and

]
’c h c e

®
(1)

For a perfect gas

I |
Pe 8

and the Chapman-Rubesin factor, C, is agsumed unity across the boundary-
layer,

Using the above guesses of the profile data, the governing equa=
tions are golved to determine Fz, Fé, F;, Zy» gé, and g;. The sub~
scripted variables ( )1 and ( )c are set equal to the variables with
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o
subgeript ( )2 and new values of 6, 0°', ;5-. Vc’ and C are then

computed where

nc
v o=V, J (2¢ F_, + F ) dn
(]

Cw i 91/2 Q—t—:)- (Sutherland's law)
Pe Ve (6 + e

or

C = e(“'l) (power law)

The procedure-ie repeated until the convergence criteria of section
6.2.4 1s satisfied,

For an equilibrium gas, the initial guesses of the profile data
are assumed to be the profile data corresponding to the converged
solution for a perfect gas described above. Using the perfect gas
profiles of F and g, the remaining thermodynamic and transport prop-
erties are determined by use of the table=-look-up procedure, Deri~
vatives of 6 and C are ev#luated numerically for the equilibrium gas,

The iteration procedure is the same ag for the perfect gas case,

6.5.2 Initial Profiles for the
Turbulent Boundary~Layer Equations
The solution of flat plates, wedges, or nozzle flows assuming
fully developed turbulent floﬁ assumes that the profiles at x = 0 and

x = 0,001 are similar, This procedure has been adopted because the
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values of e+ are zero at x » 0, With this exception and assuming an
initial profile for e+ as zero, the starting procedure is the same as
for the laminar boundary layer,

An alternate method for starting these solutions is to use the
laminar starting profile at x = 0 and assume an instantaneous transi-
tion to turbulent flow at x > 0,001, Both methods have been used and
the differences in the resulting solutions are insignificant,

For blunt body solutions, the turbulent gtarting profiles are
determined at x = 0 using the limiting form of the governing equations.

The initial guesses of the starting profiles for the equilibrium
solution is determined from the converged profiles for a perfect gas.
Using ‘these profiles, the iteration procedure is continued using the

equilibrium gas propercies until the convergence tests are satisfied.

6.6 Boundasx-Lﬁxer Paramaters

The definitions of the boundary-layer thicknesses, skin-friction
coefficient, heat transfer, heat transfer coefficients, and Stanton
numbers which have been used in the boundary-layer calculations are
presented in this section, Both the dimensional and nondimensional

expressions are given,

Velocity or Boundary-Layer Thickness

%
The velocity thickness, &, 1s assumed to be the value of y at

*
2; = 0,995, and is determined by interpolation in the velocity profile
ue

array.,

Incompressible Displacement Thickness

The incompressible displacement thickness is computed using the
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two~-dimensional definition

or
%
8 € (25)1/2 Na p
k VD e
a - 3 p
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e e
Compresgible Displacement Thickness
Two-dimensional
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Axigymmetric?

The axisymmetric compressible displacement thickness is approxi-

mated asy (Cebeci and Mosinskis [ref., 27]): =~ -

* *
r + ye
* % * * 2 * * 2 x % % %
P, Uy [(x + ye) - (r + GAxi) ] =2 I p ur dr'
*
r
or
* 1/2
8 *, %
A:i - 1+ 26r/a 1
a
Momentum Thickness:
y*
% e * “* u* %
6 = J 2;;-1; 1 ==gl dy
P u u
o ‘e e e

or

1/2 Ny

*  gon (28)
a Pg Uy ¥ A

Heat Transfer Ratet

In dimensional variables
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or

In nondimensional form

. *
*%
. o tule (o
%, c * u*3 Prw Ay "
VD Pref Yref
or in Levy-Lees variables
k|

qw . E_EFW He pe u, r Fﬁq
Pr_ (25)1/77 anj_

q, is converted to BTU/ftz-sec as

e ot w3 e (77
qw %, pref ref VD 8

Film Coefficients:

‘% %
c
hgl s *qw L. BTU/inZ-sec-°R
Hw - HAw (778) (144)

or

* & *

qw p pref ref

2 Q
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or

or

or

y 32.17 lbm/ inz-s ec

hg, =
2 * * 1
@ - H, ) 44
;w X out 32,17
€ [o] u .
VD ref “ref
hgz = (Hw - HAW) 144 1bm/in =8ecC

Stanton Number Definitions:

A, Based on free-stream conditions

%
St = - S

'« ® % (H* H*)
P u, e W

% Evp

St N e St

B, Baged on edge conditions

* %
St = - ki

e * % % %
Pa Yo (He Hw)

St = =
- H
e Py U, (H w)

Heat Transfer Coefficients:

A, Based on free-stream conditions
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%

h * % % %
® P U (HAw - Bw)
or
¢ ..-...fx.f_VLy
b, (HAw - Hw
B, Based on edge conditions
*%
C - qw
h = Tx % H* H*)
e pe ue ( AY W
or
A %, Syp
h - u (H, ~ H)
e pe e Aw w
Skin=Friction Coafficients:
A, Based on free-~stream conditions
%*
2 Tw
Cf "% %2
] pum
or

c - 2 €vp Ve Cw ggtue r [
£, (25)1/2

B. Based on edge conditions:
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Vi, RESULTS AND DISCUSSION

The_implicit finite~difference acheme developed in Chapter VI has
been applied to obtain solutions of laminar and turbulent boundary-
layer flows of perfect gases and equilibrium gas mixtures over flat
plates, an hyperboloid, a spherically blunted cone, and in axisym=-
metric nozzles,

Solutions of perfect gas turbulent flows using different expres-—
sions for the inmer eddy viscosity law are presented in Section 7.1,
and are compared with experimental data and/or other numerical solu-
tions for cases where these data were available, Solutions using the
equilibrium gas option are presented in Section 7.2, and the solution
of boundary-layer flows with mass injection are presen%ed in Section
7.3,

The numerical solutions presented assume either fully developed
turbulent or laminar flow; however the boundary-layer computer pro=
gram described by Miner, Anderson, and Lewis [ref, 28] provides
options for either an instantaneous or a continuous transition from
laminar to turbulent flow. The continuous transition model is based
on the experimental results of Owen [ref. 29] and is discussed in the

report on the computer program,

7.1 Pexrfect Gas Turbulent Boundary-Layer Flows

Solutions of turbulent flows over flat plates and in axisymmetric
nozzles using the inner eddy viscosity laws of Van Driest, equation
(70), Cebeci and Smith, equation (72), absolute value of the pressure

gradient, equation (73), and Reichardt, equation (77), are presented
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in this section. The inner eddy viscosity law proposed by Patankar
and Spalding, equation (71), was found to be unsatisfactory for flows

having a significant favorable pressure gradient and is not considered.

7.1.1 Perfect Gas Solutions for Turbulent Flows Over Flat Plates

For flat-plate flows the inner eddy viscosity laws expressed by
equations (70)~(74) are identical and are referred to as the Van
Driest model, The inner eddy viscosity law given by equation (77) 1is
referred to as the Reilchardt model,

Three flat-plate solutions are presented corresponding to case
numbers 20, 26, and 62 of the experimental data given by Coles [ref,
30]. The results of the present numerical method of solution are
compared with Coles' experimental data and the solutions of Van Driest
[ref, 22] and Dorrance [ref. 31]. The free~stream conditions for fhe
three cases are given in Tdble I, Thé f*ee-atréam Mach numbers for
cases 20, 26, and 62 were 3,701, 2,578, and 4.544 respectively, and
thae plates were assumed to be adiabatic.

Boundary=layer displacegent thicknesses predicted using the Van
Driest and Relchardt eddy viscosity models are compared with Coles'
experimental data in Figure 2, The displacement thickness predicted
using the Van Driest and Reichardt eddy viscosity model were found to
differ by less than 3% for the three cases, but the predicted values
of displacement thickness differ from Coles' experimental data by as
much as 20%. The numerically determined displacement thickness is less
than the experimental value in all three cases, The numerical result

is in good agreement with experiment for Case 62,
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The numerically determined velocity profiles at x = 21,48 in, for
Case 20 are presented in Figures 3 and 4, The results using either
eddy viscosity model are in good agreement with Coles' experimental
data, Figure 4 shows the solution given by Van Driest [ref, 22],
Figure 5 shows tha eddy viscosity profiles predicted using the Van
Driest and Reichardt eddy viscosity models at x = 21,48, The dif-
ference in the two models is not significant,

The predicted skin-friction coefficients for the three cases are
compared with the solution of Dorrance [ref, 31] and Coles' experi-
mental data in Figure 6, The skin-friction predictions for Cases 20
and 26 are in excellent agreement with both the experimental data and
Dorrance's solutions. For Case 62, the present method‘of solution is
in good agreement with the experimental data points for Reynolds num=~
bers greater than 3 x 106, but for Re = i.? X 106 the present numer-
ical solution p;edicts a skin-friction coefficient which is approxi-
mately 157 lower than the experimental value, The present method of
solution is in better agreement with the experimental data for this
case than the solution of Dorrance.

The above results are representative examples of turbulent flat-
plate solutions and in all cases considered the numerical results were
not significantly influenced by the choice of the inner eddy viscosity
law, However, the use of the Reichardt inmer law reduced the comput-

ing time by a factor of approximately 10 (see Section 7.1.3).

7.1.2 Turbulent Flow of Perfect Gases in Axisymmetric Nozzles

The present method of solution has been used to solve three axisym-

metric nozzles, and the results are compared with the integral method
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of solution developed by Elliott, Bartz, and Silver [ref, 15] and ex~
perimental data where the data were available, The inner eddy vis-
cogity laws of Van Driest, equation (70), Cebeci and Smith, equation
(72), absolute value of the preasure gradient, equation (73), and
Reichardt, equation (77), have been considered for the sample case

given by Elliott, Bartz, and Silver [ref. 15],

A, Elliott, Bartz, and Silver Sample Case

The problem considered consists of a 30° conical inlet section, a
circular arc throat section with a throat radius of 0,885 in, and a
15° conical divergent section. The réservoir pressure and temperature
were 300 psia and 4500°R respectively, The specific heat ratio, vy,
was assumed to be 1,2 and the wall temperature was assumed to be a
constant value of 1145°R, The data for this case are given in Table
II, and the nozzle geometry is shown in Figure 7,

Eddy viscosity profiles predicted at the nozzle throat using the
four eddy viscosity models are shown in Figure 8, In the region near
the wall, n < 0.4, the eddy viscosity predicted using the four inmer
laws are essentially identical, The Cebeci and Smith inner law (72)
predicts a second zero value of e+ at n = 1,2 resulting from the pres-
sure gradient term y/p-%% being equal and opposite in sign to TW/O.

It is noted that the solution using the Patankar and Spalding expres-
sion, equation (71), fails upstream of the throat as a result of the

square root term being negative, By replacing the sum

T dp
P p ax
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by

T dp
iy L8
p p dx

Cebeci and Smith [ref. 11] were successful in obtaining solutions to
problems having a significant pressure gradient, This model, equation
(72), results in substantially smaller values of e+ for most of the
boundary-layer than 1g given by the Van Driest Law, equation (70), the
absolute value of the pressure gradient equation (73) and the Reichardt
Law, equation (77). The values of e+ corresponding to the &an Driest
expression and the expression using the absolute value of the pressure
gradient differ by less than 3%, and the s+ corresponding to the outer
law, equation (79), n > 1.7, algo differs by less than 3%. In the
sublayer, the Reichardt expression, equation (77), predicts values of
e+ which are 10 to 20%Z larger than those given by equations (70) and
{73), but above the match point with the outer law, n = 1.4, e+ is
nearly the same as when using equation (70) or equation (73) for the
inner law, It is emphasized that the outer eddy viscosity law is the
same expression in all cases,

The resulting profiles of velocity and temperature differed by
less than 5% for the solutions obtained using the different viscosity
laws. The boundary-layer paramaters 6, 6*, 8, s s etc, also agreed
to within 5Z, If the inner law of Cebeci and Smi:h is excluded in the
comparison, the resulting solutions differed by less than 3%, These
results indicate that including the pressure gradient term in the inner

law had little influence upon the eddy viscosity profiles, and had
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essentially no influence upon the resulting solution,

As a result of the above, and the formulations of equations (71)
and (72) for the inner law, these expressions were dropped from further
congideration. The results which are discussed below were obtained
using the Van Driest or Reichardt expression for the inner eddy vis-
cosity law. However, as in the previous cases, use of the Reichardt
inner law resulted in a substantial reduction of the computer time re-
quirement (see Section 7,1.3). Since the differences in these solu-
tions were ingignificant, these data are shown as a single curve,

The heat transfer coefficient, boundary-layer, momentum, and dis-
placement thicknesses predicted by the present numerical solutions are
compared in Figures 9=-12 with the results obtained by Elliott, Bartz,
and Silver [ref, 15] using an integral method of solution, The solu-
tions using the present numerical method and the integral method differ
by up to 30%; however it should be noted, that the solutions using the
integral method can be varied over a wide range by changing the assump-
tions which must be made relating to the nominal entrance conditions,
Since the starting profiles for the present method are determined from
the solution of the governing equations, direct comparison of the two
methods i1s not possible, also it is not clear what assumptions should
be made for the initial conditions necessary for the integral method
if experimental data were not available before the calculations are
made, Because of the arbitrariness of the solution using the integral
method, the agreement of the two solution procedures is considered to

be adequate,
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Bs _NASA-Lewis Case 2a (Boldman et al. [ref, 161)

The nozzle configuration consist of a 30° conical convergent sec-—
tion, a circular arc throat section, and a 15° conical divergent sec-
tion. The throat radius is 0,746 in., and the stagnation pressure and
temperature were 300 psia and 970°R respectively., The test conditions
are given in Table I1I. The geometry is shown in Figure 13, and the
pressure distribution corresponding to a one-~dimensional expansion and
the experimental data are shown in Figure 14, The experimentally
determined wall temperature distribution is shown in Figure 15,

Solutions to this problem were obtained using the Van Driest and
the Reichardt expressions, equations (70) and (77), for the inner eddy
viscosity laws, and as in the previously discussed Elliott, Bartz, and
Silver sample cage, the differences in the solutions were ingsignifi-
cant, However, the solution using the Van Driest inner law required
approximately 10 times more computing time than was necessary using
the Reichardt inner law (see Section 7.1,3).

The predicted heat~transfer coefficient using the present method
of solution is compared with the experimental data and the solutions
obtained using the Elliott, Bartz, and Silver integral method in Figure
16, The present method of solution is in excellent agreement with the
experimental data in the throat region and downstream, Differences of
up to 207 between the predicted and experimentally determined heat=-
transfer coefficient are noted in the subsonic region of the nozzle,
The near discontinuous change in the experimental value of the heat-
transfer coefficient at z = 1,97 is the result of the temperature tabu-
lated in this region (see Figure 15), and also the experimental pres-

sure data were not smooth in this region. For the present calculations,

62



these data were smoothed in the region 1.9 < z < 2.5 The integral
method of golution is geen to reflect a strong dependence upon the
starting condition assumptions., The two solutions presented using the

integral method differ from each other by as much as 50Z,

C.__ AEDC Hotshot Wind Tunnel Nozzle

The problem considered corresponds to the case referred to as
"Hotshot 1" by Edenfield [ref, 17]. The nozzle geometry, wall enthalpy
and pressure distribution are shown in Figures 17-19, The operating
conditioris are given in Table IV, In this section the experimental
pressure distribution shown in Figure 19 was not used, The results
presented assume a one-dimensional expansion of nitrogen.and the speci-
fic heat ratio, vy, was taken as 1.4, The experimental wall enthalpy
distribution, Pigure 18, for 20 milliseconds of tunnel operation was
used, The stagnation pressure and temperature were 11,500 psi and
S400°R, The nozzle consist of 10° and 5° converging conical inlet
sections, a faired circular arc throat section, and a 5° conical di-
vergent section. The throat radius is 0,055 in,

Attenpts to solve this problem using the Van Driest expression,
equation (70), for the inner eddy viscosity resulted in an instability
at z/r* = 100,* When the Reichardt inner eddy viscosity law, equation
(77), was used a complete solution was obtained. The solutions ob-
tained are compared for valueg of z/r* up to 100 in Figures 20-23,

Figure 20 shows the eddy viscosity profiles for z/r* in the range

from 7 to 80, Differences in the eddy viscosity using the two models

*This applies only if the velocity derivative in equation (70) is
evaluated implicitly (see Section 7.1l.3).
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differ from 5 to 20% with the larger differences being at stations near
the nozzle throat, Heat-transfer rates predicted using the two eddy
viscosity models are shown in Figure 21, For this problem, the Van
Driest inner law resulted in heat-transfer rates which are approximately
10Z higher than the predicted heating rates uging the Reichardt inner
law in the region near and upstream of the throat, Downstream of the
throat, the Van Driest model oscillated about the solution obtained
using the Reichardt inner eddy viscosity law. The displacement thicke
ness predictions using the two inner eddy viscosity laws were nearly
identical and are shown in Figure 22,

The computer time required to obtain a solution to a given axial
position, z/r*, is shown in Figure 23, The curves illustrate the time
requirement in terms of the total number of iterations, The use of
the Van Driest inner law required approximately five times as many
iterations to obtain a solution to z/r* = 100 Qa was necessgary for the
complete solution using the Reichardt inmer law,*

The problems discussed in this gection have demonstrated that the
choice of the inner eddy viscosity law had little influence upon the
resulting solution for cases where convergence was obtained, and that
the computing time requirement was congiderably less when the Reichardt
expression was used for the inner law (see Section 7,1.3)., For the
cases where experimental data were available, the results obtained with

the present method of golution were in good agreement with these data,

*This applies only if the velocity derivative in equation (70) is
evaluated implicitly (see Section 7,.,1,3).
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7.1.3 Revised Evaluation of the Inner Eddy Viscosity Laws

After the solutions discussed in Section 7,1 and 7.2 were ob-
tained, the more recent expression for the inner eddy viscosity law
given by Cebeci [ref. 13] became available., This relation, equation
(74), was used in the boundary-layer computer program with and without
including the pressure gradient term; equation (74) is the same as
that given by Van Driest, equation (70), when the pregsure gradient
term is neglected, The results obéained using equation (74) with the
pressure gradient term included were essentially the same as that given
by the Van Driest expression and resulted in instability at z/r* = 100
for the AEDC nozzle,

In all of the results which have been presented up to this point
using Van Driest's and Cebeci's expressions for the inner eddy vis-
cosity, the velocity derivative was evaluated at .the station x + Ax.

It was noted that in the cases which resulted in converged solutions,
the solutions obtained were relatively unaffected by the inner eddy
viscosity law which was used, and that a large number of iterations
were necessary if viscosity laws based on Van Driest's [ref. 22] modi-
fication of Prandtl's mixing length were used, The difficulty appeared

to be in the evaluation of {EE

an)x+Ax
implicit evaluation of the velocity derivative, the approximation

o To determine the influence of the

was made, With thia replacement, the Van Driest inner law, equation

(70), resulted in solutions which were essentially identical to the
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solutions obtained using the Reichardt expression, equation (77), and
the computer time requirement was nearly the same for both eddy vis~
cosity laws, When the pressure gradient was included in equation (74),
the results obtained gshowed that the pressure gradient term had little
influence upon the solution, For the cases considered, the use of
equations (70), (74), and (77) resulted in solutions which agreed to
within * 3%Z. Therefore, the results comparing the eddy viscosity laws
presented in Section 7,1 should be considered as the influence of the
implicit evaluation of'%§ rather than the differences in the eddy vis-
cosity expressions,

The results presented in' Section 7.2 have been obtained using the
Reichardt expression for the inner eddy viscogity, and as mentioned
above, the solutions are not significantly affected by the choice of
the inner eddy viscosity expression, Equations (71) and (72) were not

considered in this evaluation,

7.2 Laminar and Turbulent Boundary-Layver Flows of Reacting Gas

Mixtures in Chemical Equilibrium

For the perfect gas solutions presented in Section 7,1, it was
possible to obtain experimental data for most of the problems con=-
sidered, However, it has not been possible to obtain experimental data
in the range of pressure and/or temperature where the departure from
the perfect gas condition is significant, For the problems considered
in this section, both the perfect and the equilibrium gas golutions
are given for the cases where gsignificant differences were found to
exist,

To check the accuracy of the table-look-up procedure, a number of
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problems were solved at conditions corresponding to the range of pres-~
sure and temperature where the perfect gas relations are correct. For
the cases considered the solutions with the table-look-up and the per~

fect gas options agreed to within + 37,

7+2.1 Equilibrium Gas Solutions for
Laminar and Turbulent Flows Over Flat Plates

Two flat plate cases were considered corresponding to the experi-
mental data given by Hironimus [ref. 32]. The free-stream Mach number
and temperature for Case 1 were 7,391 and 533°R and for Case 2, were
7,58 and 339°R respectively. The wall temperature was 533°R for Case
1 and 355°R for Case 2, The test conditions are given in Table V.
Plots of Stanton number based on edge conditions are shown for both
fully developed turbulent and laminar flow for Case 1 and Case 2 in
Figures 24 and 25, The solutions shown were obtained with the table-
look=up procedure, The perfect gas solutions for these cases differed
from the equilibrium solution by less than 3% and are not presented,

Downgtream of the transition from laminar to turbulent flow the
agreement of the predicted and the experimentally determined Stanton
number data is within 104, and in the region of laminar flow the agree-

ment between the numerical and experimental data is good.

7.2.2 Equilibrium and Perfect Gas Solutions for

Laminar Flow Over a Hyperboloid
A 10° half-angle hyperboloid at an altitude of 100,000 ft, with

a wall temperature of 1400°K was considered for a free-stream Mach

number and temperature of 20,178 and 226.,98°K, This case corresponds
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to Case A of the AGARD test cases (Lewis [ref, 33])., The flight con-
ditions are given in Table VI, The body geometry and pressure distri~
bution are shown in Figures 26 and 27.

The solutions of both perfect air and equilibrium air have been
obtained for the laminar cage only, The perfect gas solution is com~-
pared with the results of Adams [ref, 34], and the equilibrium solu=~
tion is compared with Blottner's and Smith's results as presented by
Lewis [ref, 33].

Figure 28 shows the boundary~layer displacement thickness pre-
dictions for the perfect and equilibrium air cases, The present method
of solution is seen to be in excellent agreement with Adams' solution
for the perfect gas case, The present equilibrium air solution is in
good agreement with the results given by Keltner and Smith [ref. 35]
but differs by a factor of two from the solution given by Blottner
[ref. 1]. It is noted that Blottner used finite rate chemical re~-
actions and complete multi-component diffusion whereas Keltner and
Smith used a finite-rate binary air model,

Plots of the skin-friction coefficient and Stanton number distri-
butions are shown in Figures 29 and 30, For the perfect gas case the
skin friction predicted by the present method of solution is in excel-
lent agreement with Adams' solution for S/rn_l 0.4, but the solutions
differ by up to 1l0% near. the stagnation point. The Stanton number
distribution given by the present method is in good agreement with
Adams' results for all S/rn.

For the equilibrium air solution, the present method is in excel-

lent agreement with Blottner's solution for both skin-friction and
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Stanton number distributions.
The maximum differences between Blottner's, Keltner and Smith's,

and the present results are less than 5Z,

7.2¢3 Equilibrium and Perfect Gas Solutions for Laminar and

Turbulent Flow Over a Spherically-Blunted Cone

A 5° halfeangle spherically-blunted cone at an altitude of 70,000
ft. is considered in this section.* The free-stream Mach number and
temperature were 19,564 and 226,98°K respectively. The wall tempera-
ture was assumed to be constant at 1000°R, The problem data are pre-
gented in Table VII, The geometry and pressure digtribution are shown
in Figures 31 and 32, The pressure digtribution for this case was
determined for perfect air, vy = 1.4, using the computer program devel-
oped by Inouye, Rakich, and Lomax [ref, 36].

This problem is included to illustrate the solutlion of a weak
adverse pregsure gradient resulting from an overexpansion and recom=-
pression of the gag, Solutions are given for both laminar and fully
developed turbulent flow for specific heat ratios, vy, of 1.4 and 1,165
and equilibrium air,

The boundary-~layer displacement thickness, skin-friction, Stanton
number, and heat-transfer rate distributions for these solutions are
pregented in Figures 33-37, Since experimental data or other numerical
solutions are not available for comparison, it is not possible to

assess the accuracy of the results, However, because of the similarity

*This case was provided by Mr., Randy Graves of the NASA Langley
Research Center as representative of a body of unpublished free-flight
experimental data available for this body.
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with the hyperboloid discussed in Section 7.2,2, these results appear

to show the correct trends,

7.2.4 Turbulent Flow of Equilibrium Gases in Axigymmetric Nozzles
The data for this case are given in Section 7.1.2.0 of this
Chapter, Edenfield [ref., 17] considered the nozzle discussed in this
section for preliminary investigations leading to the design of con-
toured nozzles for hypersonic hotshot wind tunnels with a test sec~
tion Mach number of about 20, Edenfield used a number of theories to
predict the downstream boundary-layer displacement thickness, but the
available methods of prediction either failed to give a complete solu-
tion for the nozzle or the results were found to be unacceptable,
Attempts to solve the problem using the Elliott, Bartz, and Silver
[ref. 15] integral method failed at z/r = 1350.% This failure was
attributed to the assumed power law total enthalpy profiles used in the
integral method., All other attempts to predict the displacement thick=
ness used the momentum equation only with the Crocco enthalpy distribue-
tion or correlation formulas,
Before discussion of the present results, a brief deascription of

the physical nozzle contour and the contour used in the calculations
is given, The physical nozzle consists of a subsonic region composed
of a 10° conical section followed by a 5° conical section. The throat
is cylindrical with a length of one throat diameter and the supersonic
portion is a 5° conic section. For the calculations, the nozzle con-

tour was smoothed as shown in Figure 17,

*
*In this section r denotes the non~dimensional throat radius,
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It should also be noted that the total length of the nozzle was
given as 92,087 inches (Edenfield [ref., 17}, Using a throat radius of
0,055 inches results in a maximum value of z/r* of approximately 1684,
However, experimental pressure measurements are given in Figure 19 for
values of z/r* up to approximately 1850. The pressure data used up=
stream of z/r* = 100 corresponds to an isentropic expansion of the
gas (nitrogen), The transition from the isentroplc expansion pressure
data to the experimental data is particularly noticeable in the larger
gcale plots of the boundary-layer thicknesses coméuted using the pre~
sent method of solution for z/r* between 100 and 400, With reference
to the above comments, it is not clear what conclusions should be
made in the comparison of the predicted and experimental .displacement
thickness. However, the same conditions have been used for all pre-
diction methods and the results of the different solutions may be
compared,

The momentum thickness distribution corresponding to the Elliott,
Bartz, and Silver integral method of solution and the present method
18 shown in Figure 38, The velocity or boundary-~layer and displacement
thickness are shown in Figure 39, and the predicted heatftransfer rates
are given in Figure 40, The results presented in Figure 40 from the
integral method were obtained by solving both the momentum and energy
equations with a power law for the total enthalpy profiles,

The differences in the boundary~layer thickness predictions vary
from 107% for the velocity thickness to a factor of 2 for the momentum
and displacement thicknesses, The heat-transfer rates predicted by the

integral method are from 30 to 60% lower than the rates predicted by
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the present method, The results obtained with the integral method do
not appear to be realistic, and as noted previously the method failed
at z/r* = 1350, The assumed power law total enthalpy profiles to-
gether with the assumed velocity profiles in the intggral method
resulted in solutions which predicted large densities near the outer
edge of the boundary layer in the downstream region of the nozzle,
The density profiles predicted by the integral method, the method of
Enkenhus and Msher [ref, 37] using the Crocco enthalpy distribution,
and the present method are shown in Figure 41 for z/r* = 984, As
noted by Edenfield [ref, 17], pitot pressure measurements would detect
the presence of these peaks in density if they exist, but the measure-~
ments made indicate that such peaks do not exist., The density profile
predicted with the present method shows a decrease in density near the
wall which is characteristic of boundary layers for cold wall cases,
Figure 42 shows the boundary-layer displacement thickness pre=~
dicted by Enkenhus and Maher [ref., 37], Burke and Bird [ref, 38], Lee
[ref. 39], Elliott, Bartz, and Silver [ref. 15], and the ﬁresent
method of solution, The present two-dimensional displacement thick-
ness prediction is in general agreement with Burke's calculation based
on the edge Réynolds number, The axisymmetric value of the displace=~
ment-thickness prediction is in general agreement with the solution
of Lee. Burke's'solution based on a reference Reynolds number (the
reference Reynolds number is computed using Eckert's reference condi~
tiong) gave the best agreement with the data presented near the nozzle
exit, but as noted at the beginning of this section, the experimental

#
data presented at z/r = 1825 is outside of the nozzle dimensions.
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The methods of Enkenhus and Maher, and Elliott, Bartz, and Silver are
in poor agreement with the experimental data presented and the other
golutions,

Figure 43 shows the displacement thickness predictions of the
Elliott, Bartz, and Silver method for both an assumed power law and the
Crocco enthalpy distribution. For the Crocco enthalpy distribution
only the momentum equation is solved by the integral method., Two solu~
tions are given corresponding to different skin-friction laws using the
method of Enkenhus and Maher, The present two~dimensional and axisym=
metric solutions are in good agreement with the other solution proce=
dures which ugse the momentum equation only. It is not clear why these
prediction methads should be in good agreement with experiment for
z/r* up to 1100 and overpredict the displacement thickness by a faétor
of two at the nozzle exit,

To demonstrate the feasibility of obtaining solutions to problems
with more severe conditions than the cases presented, the nozzle
geometry, wall enthalpy distribution and reservoir density for the
above case have been retained and the reservoir pressure and tempera=-
ture were changed to 58, 522 psia and 18,000°R respectively., Solutions
were obtained for perfect nitrogen, equilibrium nitrogen, and equili-
brium air for fully developed turbulent flow, The pressure distribu=-
tion corresponds to a one-dimensional expansion of the gas and is
shown for the three cases in Figure 44. The exit Mach numbers for per~
fect nitrogen, equilibrium nitrogen, and equilibrium air were 21,64, *
13,69, and 10,62 respectively.

The predicted heat=transfer rate and Stanton number digstribution
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are shown in Figures 45 and 46, The heat-transfer rates predicted for
the equilibrium gases were from two to five times greater than the
perfect gas solution for the region néar and downstream of the nozzle
throat, As a result of the different edge conditions, the Stanton

number distribution shows less wvariation,

7.3 Perfect Gas Solutions for Laminar and Turbulent
Flow Over a Flat Plate With Normal Mass Injection

Three flat-plate gsolutions are presented for air into air mass
transfer and one case with no mass transfer corresponding to the exper-
imental data referred to as run no's, 8, 11, 15, and 19 by Danberg
{ref. 40], The free~stream Mach number for these cases was approxi-
mately 6.3 and the temperature was approximately 59°K. The injection
paramater, cq = pwyw/peue. varied from 0 to 25,8 x 10-4. The ratio of
the wall-to~edge static temperature was approximately 4.0, More com~-
plete data are given in Table VIII,

The velocity profiles obtained numerically are compared with
Danberg's experimental data for the four cases in Figure 47, The num~
erical solutions correspond to fully developed turbulent flow where
the inner eddy viscosity law is the modified Van Driest expression
given by Cebeci'[ref. 13], For y* < 6, the predic;ed velocity is
consistently lower than the experimental data, and except for the case
with no mass injection, run no, 19, the velocity derivative at the ‘
wall given by the numerical solution is considerably less than the
corrasponding experimental value, The computed velocity profiles are
not in good agreement with the experimental data fof any of tﬂe cases

considered having mass transfer.

The predicted skin-friction and heat-~transfer distributions are
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ghown in Figures 48 and 49, The predicted heat-transfer distribution
is in good agreement with the experimental data., However, as would be
expected from the poor agreement of the predicted and experimental
velocity profiles, the agreement between the predicted and experi-
mental skin-friction data is unsatisfactory., It is noted that the
experimental heat-transfer data were determined indirectly by the use
of thermocouples imbedded in the plate. The experimental skin-friction
data were determined by two=-point differentiation of the experimental
velocity profile and are more likely to be influenced by the presence
of the probes within the boundary layer, Tabulations of the predicted
and experimental data for heat transfer and skin-friction are given-in

Table IX for the turbulent solution.

7.4 Convergence Test and Computing Time Requirements

The golutions presented above have been obtained with ¢, = ¢,01

f
using the function test and the additional requirement that the mini-
mum number of iterations at the new station be 2 or greater., The last
requirement was found to be necessary to insure a smooth distribution
of the displacement thickness when considering turbulent flow problems
with weak pressure gradients,

To determine the influence of €. upon the computing time and the
resulting solution, a number of the above cases were computed with
€ ™ 0,001, The flat plate Case I considered in Section 7.2.1 re~
quired approximately ten times more computing time with € = 0.001

than with ¢_ = 0,01, The results of the two solutions differed by

£
legss than 27. Essentially the same results were obtained for other

body shapes where the flow was turbulent and the ratio of wall to
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stagnation enthalpy was small, The computing time was not significantly
influenced by € for laminar flows with zero pressure gradient, since
these flows are self similar,

Representative computing time requirements for an IBM 360-65
computer are given in the table below, The times given are for solu-
tions where a large number of gtations were solved and should be re~
garded as maximum computing times rather than the optimum, The tabu~
lated times for turbulent flows are for the use of the Reichardt inner
eddy viscosity law, The solution times would be increased by approxi-
mately 20 to 30% using the Van Driest inner law for the same number of

stations as when using the Reichardt law,

Execution Time (Min:Sec)

Laminar Turbulent
Body Section Perfect Equilibrium Perfect Equilibrium
Shape Number Gas__ Gas Gas Gas
742,.1 0 33 - 1:32 234
(Case 1)
Flat Plate
7.2,1 0 ¢ 32 - 1:9 2:36
(Case 2)
Hyper-
boloid 762.2 0 ¢ 51 1531 - -
Blunt Cone 7.,2,3 2 s 27 11:22 439 19:3
7.1.2 (B) - - 2326 -
Nozzle
7.2.4 - - 7‘3 22350
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VIII, CONCLUSIONS AND REMARKS :

The results which have been presented demonstrate that the Crank~
Nicolson type implicit finite-difference scheme can be used success=
fully to obtain solutions of the turbulent boundary-layer equations
for nozzle flows of perfect gases or mixtures of perfect gases in chem-
ical equilibrium, For the low Mach number perfect gas solutions con~
gidered for nozzle flows, the present method of solution was in excel~
lent agreement with the experimental data, For the hypervelocity
nozzle, the present golutions were in good agreement with other numeri-
cal solutions which used only the momentum equation and the Crocco
enthalpy distribution, However, these solutions were not in good
agreement with the availlable experimental data, but these experimental
data did not match with the given geometry near the nozzle exit. The
equilibrium solution for the hypervelocity nozzle was found to be
essentially the same as that for a perfect gas at the same reservoir
conditions. Thus, the data which were available deo not appear~to be
sufficient to establish the accuracy of the numerical method.

The resultg presented for equilibrium laminar flow over a hyper-
boloid were found to be in excellent agreement with other numerical
golutions for the predictions of heat transfer and skin frictiom, but
the displacement thickness calculations differed by a factor of two or
more among the different numerical solutions which were available for
comparison,

Solutions of flat=plate laminar and turbulent boundary-layer flows
of an equilibrium gas were obtained, but these solutions were also

essentially the same as for a perfect gas. The solutions obtained were
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in good agreement with the experimental data,

In all of the turbulent boundary=layer calculations considered
without mass transfer at the wall, the.solutions cobtained were found
to be esgentially independent of the expression used for the inner
eddy viscosity law, That is the pressure gradient term appearing in
the inner eddy viscosity law may be included or excluded without sig-
nificantly influencing the results,

For flat-plate turbulent flows with mass injection at the wall,
the numerical results were in good agreement with the indirectly
determined experimental data for heat transfer, but the predictions
of skin friction and velocity profiles, determined from direct measure-
ments, were not in satisfactory agreement with the experimental data,
Thus, these results are also inconclusive,

The present method of solution has been demonstrated to be accu=
rate for both internal and external flows of perfect gases for both
laminar and turbulent flows for the case of no mass injection, More
experimental data are needed to verify the method for the case of mass
transfer,

For the equilibrium chemistry calculations, the present method of
solution for the laminar flow of the gas is in good agreement with
other numerical solutions., For turbulent flow of an equilibrium gas
the present method of solution was found to be stable and the solutions
show the expected trends, but the experimental data which were avail=-
able were in a2 range of pressure and/or temperature which showed little
departure from the perfect gas condition. With the exception of the
Elliott, Bartz, and Silver [ref, 15] integral method of solution for

equilibrium chemistry turbulent boundary-layer flows in nozzles, other
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numerical solutions were not available for comparison, For the case
of a hypervelocity nozzle, the integral method failed to converge for
a stagnation pressure and temperature of 11,511 psia and 3000°K,
Whereas, the present method was found to be stable for nozzle calcula-
tions with reservoir pressures and temperatures up to 58,522 psia and

10,000°K respectively.
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IX. APPENDIX A

Thermodynamic and Trangport Properties and one Dimensional

Expansion of a Reacting Gas Mixture in Chemical Equilibrium

In order to solve the congservation equations for laminar or tur~-

bulent boundary~layer flow of an arbitrary mixture of perfect gases in
thermodynamic equilibrium, it is necessary to specify the boundary-
layer edge conditions and to provide a method for determining the
local thermodynamic and transport properties for the gas mixture con-
sidered,

The thermodynamic and transport properties and the inviscid ex-
pansion data which have been used in the present solution of the
boundary~layer equations have been obtained by modifying the basic
computer program developed by Lordi, Mates, and Moselle [ref. 20], -
which was developed to determine the inviscid expansion of arbitrary
gas mixtures assuming either frozen chemistry, equilibrium chemistry,
or finite-rate chemistry., Only the.equilibrium chemistry option is

considered in the sections below.

A.1_Equilibrium Gas Properties

A brief description of the procedure for determining the equili-
brium chemistry solution is included in this appendix, The notation
is the same as that employed by Lordi, Mates and Moselle, and is in-
cludea in a separ;te list of symbols presented at the end of this appen~
dix, The analysis presented below is essentially the same as that

given in Sections 2.1, 2.2, and 4,1 of their report,
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A.1.,1 Thermodynamic and Transport Properties

The enthalpy of a given gas mixture in thermodynamic equilibrium
18 a function of the internal energies of the species and the chemical
composition of the mixture, which are related to the local thermo~
dynamic properties, pressure, density, and temperature, The compogi=-
tion of a specified gas mixture at a given equilibrium state is
determined for c chemical elements and s chemical species as follows,

The chemical equation for the ith species may be expressed as

M = Mi(a

1 i-l’ 2’0000’9 (Al)

110 Og00eee®yl)s

The species to be included in the mixture are specified through the
matrix aij.
The equilibrium formation reactions for the species in terms of

the elements may'be.eipressed by.(s ~ ¢) linearly independent rela-

tions of the form

[
Mi.jzl aij Mj. i-l’ 2.0.-09 (AZ)

where the rank of the aij matrix is ¢, Lordi, Mates and Moselle note

that in some cases it 1s necessary to choose species other than the
chemical elements as components, The formation reactions for the

(s - ¢) dependent speciles are expressed in terms of the ¢ components as

Cc
M, = ) My, d=c+1l,c+ 25000048 (a3)
-

The number of gram-atoms of each chemical element, Qk’ contained

in the mixture must be given in addition to the chemical species and
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chemical elements, The total number of gram-moles of the components
which are present in the mixture is given by
)

a,, q, = Q (A4)
i T
This relation specifies the element composition in terms of the com-
ponents rather than the chemical elements,

Enforcing mass conservation in each of the formation reactions and

a global mass conservation gives the mole fractions of the components
as

g =9y - L [?,'ij - 4 (‘\','i -11X, f=c+l,¢e+2,,,5 (A5)

where

The dependent species  concentrations are related to the component con-
centrations through the equilibrium constants for the formation re-

actions, equation (A3), by

'Y -1l) ¢ v

Xi-KP P’ i it Xj ij’ i.c"‘l' C+2’0000’3 (A6)
1 4yl
where
o 0
8 H, U
- i
Kpi b MTT
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The concentrations of the independent species or components are
determined by solving equation (A5) and using a Newton-Raphson itera-
tion procedure to solve equation (A4). The molecular weight at the
specified pressure and temperature is calculated from

8
M= ) X M (A8)
jip 178
The density is then determined from the equation of state for a mix-

ture of perfect gases
Rb
Pl = pl T Tl (AQ)
and the specific enthalpy is given by

H= § Xj hj (A10)
=1

For a mixture of perfect gases, the molar enthalpy, hj’ chemical poten=
tial, u;, at one atmosphere of pressure, and molar entropy, sg, are
functions of temperature only. These data are specified by either a
simple~harmonic~oscillator model, or by polynomial curve fits to more
accurate calculations of the species properties, The latter method is
called the thermo~fit method., In both methods, the species are assumed
to be vibrationally and electronically excited, in equilibrium with the
local translational temperature, The translational and rotational
degrees of freedom are assumed to be fully excited,

For the harmonic-oscillator model, the specific enthalpy for a

monatomic or diatomic species is expressed as
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L

h
e, g, expl-¢e, /T]
1 M B :
T exp(ev /T)=1 Lj

3 T
g, [-¢, /T]
zzl 1

(2]

+ (n, - 1)

4 (All)

and the chemical potential at standard pressure is given by

h| 3 54 2(n, - 1)
—l o la o+ J In T

3 2

exp[eV /T
3

+ (n, = 1) 1In

k| eXP[(OV /T) ~ 1]

3

+1ln ) g, exp[~ €, /11 (A12)

where

in T! (A13)

and

21 M k

3 . - '
bj > In h2 + 1n p°' (nj 1) In erj (Al4)



For the thermo=-fit method, these data are given by

u2"”@0 S 2 8 3 © 4
——2 =@ -1 -b, 1 5@ --51(:1:') -Zl(T') - ¥,
(A15)

and by differentiation of equation (Al5)

hj-hg
O' T '2 13 14
T aj + bj T' + cj (T")” + dj (T")" + ej (T') (AL6)
For both methods sg is determined from
h, - u°
sgn_l.f_.i (A17)

and the specific heat of the individual species is determined by dif=-
ferentiation of equation (Al2) or equation (Al6).
The local thermodynamic and transport properties which must be
specified for use in the boundary-layer computer program are:, T',
H - 1°g10[ggl%s']. P - Log,(P'), P Logm(p*/o:). u*, cp = i?c;{'s' sy Pr.
Tables of these data are generated for the desired range of
temperatures in decreasing T' at constant pressure, The procedure is

a
repeated for decreasing in P to span the desired range in pressure.

Conversion of the data to the required form is as follows

-———.—é - '
Mo ] 1og10(}1 /RGAS)
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p!(2.205 x 10”3

(3,531 x 10-5)(32.176)(p;)

o i
cp = &gﬂp 10 /loglo(e)

The derivative is computed using a five point Lagrangian differentia-
tion polynomial,

The Prandtl number is obtained by interpolation in the tables of
data given by Hansen [ref., 41] for air and Ahtye and Peng [ref, 42] for
nitrogen,

The viscosity of the gas mixture is computed using Wilke's [ref,

43] semi-empirical formula

*
I8S Y, H
*
o= Issi 1 (A18)
i=l Z Yj ¢ij
=1
where
- -1/2 % 1/2 o 1/4
M ] M
¢1j'1—' 144 1+ | — (A19)
8 M u M
h| 3 i

*
Species viscosities, u 4 are approximated by curve fit data of the

form
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C, (A, InT+B))
*
By = e 1 T 1 i gm/cn=-Sec (A20)

%
i i

data given by use of the method of Yun and Mason [ref, 44]. The data

The constants Ai’ Bi’ and C, are obtained from curve fitting the u
which have been used in the boundary=-layer calculations were given by
Blottner [ref, 7].

The frozen values of thermal conductivity and Prandtl number, and
the compressibility factor are also computed, but these quantities were
not used,

A desgcription of the modifications made to the computer program
of Lordi, Mates and Moselle (for computing the thermodynamic properties)
and the mixture transport property calculations are given by Miner,
Andergson and Lewils [ref, 28] with listings of the added or modified

gubroutines, and a description of the necessary input data is given,

A.,1,2 Boundary-Layer Edge Conditions for a
Gas Mixture in Thermodynamic Equilibrium

The boundary~layer edge conditions for the equilibrium gas case
are obtained from the isentropic expansion of the gas from a given
gtagnation or reservoir gtate, To obtain the inviscid expansion of
the gas it is necessary to conserve momentum and energy in addition to
the requirements given in Section A,1.1. The procedure for determining
the inviscid expansion discussed below is essentially that given in
Section 2,2 of Lordi, Mates and Moselle [ref, 20].

For a quasi~one=dimensional inviscid flow of a gas the conserva-

tion of mass, momentum, and energy is expressed as
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puA = M = constant (A21)

udu +-§- do = 0 (A22)
u2
H +-3— = Ho = constant (A23)

For a chemically reacting gas mixture the entropy is expressed as

fgng l— § X 8 -'L— § X so
Ro Mo J=1 173 Mo i=1 i3
8
- ) Xj In Xj - 1n p'} = constant (A24)
j=1

for an isentropic path, The governing equation which must be satisfied

by the ¢ components and the pressure is

Fj = 0’ j = 1, 2,...0. c+ 1

where from (A5)

"‘ij =gy (v = DIX =X, J =1, 2000 (A25)
and from (A24)

8
F, = )} X

bl 1(8; - M1 S; - 1ln Xi) - 1n p! (A26)
i=1

The expansion is obtained by taking successive temperature steps
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from the reservoir value and solving equations (A25) and (A26) by a
Newton-Raphson method to determine the composition and pressure at the
specified temperature and entropy.

To express the solution in terms of area ratio, the critical mass
flow ig first determined by computing the maximum value of pu. This
maximum value with the corresponding temperature determines the throat
conditions for nozzle flows. The solution is then restarted from the
reservoir and the area ratio is determined from equation (A21), At
each point in the expansion, the density and Mach number are computed

from

R
P! = p! :Q_Tv
M

and

M e/ - 2,0/ - o)1

where the subscript b refers to the values at the previous step.

The area ratio is computed using

(pu)max

2211

A=

The velocity, pressure, and enthalpy are converted to the form

required by the boundary layer program as follows

u* = u(R_(778.158) (1.8) (32.176) T;/M)l/2

Ba log, ,(PP!)
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K = log, (1 T M_/M)

Lordi, Mates and Moselle's computer program [ref, 20] was modified and
is described by Miner, Anderson, and Lewis [ref., 28] where the addi-

tional input data are given.
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LIST OF SYMBOLS

constant in thermo-fit and harmonic oscillator expressions
for chemical potential,

ratio of local cross~sectional area to minimum cross-
sectional area.

coefficlent of T' in thermo=fit expression for species
enthalpy, or defined by Eq.(Al4) for harmonic-oscillator
description,

number of elements in mixture,

coefficient of ('1“)2 in thermo-fit expression for species
enthalpy, or mass fraction.

Z“OK) .

specific heat of mixture (ftzlsec
dimensionless specific heat (c;/RGAS).

coefficient of (T')3 in thermo-~fit expression for species
enthalpy,

coefficient of (T')4 in thermo-~fit expression for enthalpy.

degeneracy of the lth electronic state of the jth species,

Plank's constant,

= h!'/R T')

molar enthalpy of the jth species (hj AR

H' M
specific enthalpy of mixtire [H - 0] .
HT' M

8 '
loglo[-——-—-Mo ] or loglo(H /RGAS)

Boltzmann's constant
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R

e =

<4 ]

constant in thermo-~fit expression for the chemical

potential of the jth species,

equilibrium constant for the ith reaction based on partial

pressure

mass of the jth particle (gm).

molecular weight (gms/mole).

Mach number

molecular weight of the gas mixture at standard atmos-

pheric conditions.

number of atoms in the jth species.

pressure (P = P'/Pé), P' in atmospheres,
1
loglo(PPo)
mole fraction of jth component when only independent
species are present in mixture.

number of gram atoms of kth element in mixture,

gm—cal
universal gas constant [1.98647 gm-mole°K)

2

gas constant (ftzlsec -°K)

number of species in mixture

molar entropy of jth species (s, = sS/Ro)

h|
temperature (T'/T;); T' in °K

velocity (ft/sec)

U v
velocity [u u'// R, To/Mb}

mole~fraction of jth species
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matrix specifying the elements and species in the chemical
model of the mixture

mass concentration of the ith species, lb-mole/lb

energy of the 2th electronic state of the jth species

(¢, =¢c' /RT")
Lj Zj o0

characteristic relational temperature of the jth species

characteristic vibrational temperature of the jth species
(6. =29'! /1"
v v, o
3 3

U'
chemical potential of the Jth species [uj - -—JE;J

species viscosity (gm/cm-gec)

stoichiometric coefficients of the equilibrium formation

reactions

T v
ju

density (o = p'/0)
density (slugs/ft3)

%, 6 %
loglo(p /°s)

Subscripts

reservoir condition

standard atmospheric condition
pertaining to the ith reaction
pertaining to the jth species

pertaining to the kth element
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1 pertaining to the 1lth electronic level

Superscripts
¢ dimensional quantity

« ). refers to standard pressure condition
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Test Conditiong for Cole's Flat Plate Experiments

TABLE 1

case Po (cm Hg) To (°R) u (£ t/sec) M Rewx10—6/ ft Tw

20 103 561 2219 3.701 0,1642 Adiabatic
26 131 568 1972 2,578 04387 Adiabatic
62 302 563 2327 4.544 0,322 Adiabatic
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TABLE I1

Elliott, Bartz, and Silver Test Case Nozzle Data

Po = 300 psia P_ = 11,54 psia

T_ = 4500 °R T_ = 2614 °R

Re_ = 0.2 x 10%/1n, b, = 3.7 x 107" slugs/£t>
M_ = 2,685 T = 1125 °R

u_ = 6231 ft/sec, Pr = 0,83

Yy = 1,2
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TABLE III

Tegt Conditions for NASA-Lewis Nozzle = Case 2a

Po = 299,3 psia

To = 970 °R

Re = 0,588 x 106/in.
M = 5.01

Y-lnli

101

Pw L 0.56 psia
T_ = 161 °R
P, ™ 2.9 x 10'"4 slugs/ft3

u_ = 3118 ft/sec

T wvariable
W




TABLE IV

Test Conditions for AEDC Hotshot=Nozzle

Perfect Gas (Nz)

P = 11511,57 psia - P_ = 4.34 x 107" psta

T_ = 5400 °R T_ = 78,87 °R

Re_ = 5.3 x 10%/1n, b_ = 446 x 107° slugs/ft3
M_= 18,37 ' u_ = 8132 ft/sec

vy = 1,4 Tw’ variable

Equilibrium N

2
P° = 11511,57 psia P = 4,33 x 10-3 psia
T, = 5400 °R T_ = 108 °R
4 -6 3
Re_ = 3.0 x 10 /in, P_ = 3,41 x 10 = slugs/ft
M= 17.24 u_ = 8732 ft/sec

T , variable
w
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TABLE V

Tagt Conditions for Hironimus' Flat Plate Experiments

Case 1
P, = 8498 psia P_ = 1,53 psia
T, = 4913 °R T_ = 5466 °R
5 -l 3
Re, = 4,46 x 10 /in P, ™ 2.49 x 10 slugs/ft
M= 7,391 u_ = 8157 ft/sec
T = 533 °R
w
Cage 2
Po = 14670 psia P_= 2,46 psia
To = 3691 °R Tm = 339 °R
6 =4 3
Re = 1,33 x 10 /in p, = 6.1 x 10 ~ slugs/ft
M_ = 7.58 u_ = 6843 ft/sec
T = 355 °R
W
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TABLE VI

Flight Conditions for AGARD Test Case A

P! = 6.035 atms P_ = 1.0997 x 1072 atms
T) = 6996 °K T_ = 226,98 °R

Re_ = 2157943/ft ALT = 100,000 ft

M_ = 20,178 r, = 1in

u_ = 20,000 ft/sec T, = 1400 °K
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TABLE VII

Flight Conditions for Sphere~Cone Sample Case
2

P!/P, = 513,994 P_ = 4,429 x 10 atms
T!/T_ = 33,065 T_ = 217.9 °K

p!/o, = 11,783 b = 5,555 x 1072 AMAGAT
M = 19,564 Alt = 70,000 ft

Re_ = 8.898 x 10°%/£¢ T = 1000 °R

u_ = 19,000 ft/sec Y; = 1,1655
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TABLE VIII

Test Conditions for Flat Plate Flows with Mass Injection

Run %, mm Re.x 1070 M T /T T °K ¥ ¥ 510
No. X e w e e ue-
5 377.8 2,925 6.38 4,102  60.4 9,23
6 428,6 3.446 6449 4,132 58.1 9,07
7 479 .4 4,160 6.60  4.263  56.3 8.85
8 530,2 4,261 6.48 4,167  58.3 9,21
9 377.8 3,249 6.39 4,102 59,5 16,86
10 479 .4 3,950 6.42 3,991  59.1 16.24
11 530,2 4,264 6.37 3.808  60.0 17.81
12 377.8 3,185 6.28  3.864  61.9 24,91
13 428.6 3,619 6.20  3.640  62.4 24,52
14 4794 3.945 6,22  3.759  62.5 24,90
15 530,.2 4,298 6.22  3.662  62.5 25,80
16 377.8 3.057 6.52 4,418  57.6 0.0
17 428.6 3.163 6.32 4,171 61,0 0.0
18 479 4 3,679 6,446 4,346 59,0 0.0
19 530,2 4,260 6.45 4,297 58,6 0.0
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TABLE IX

Comparison of Numerical Predictions and Experimental Data for Flat Plate Flows with Mass Injection

4 4

;_;2::?5? Caren: s (am) Re/mm __ Pl Pate Oprl0T GEL0 o) st m) sy 0 5%/
exp. 12,54  6.33 0.376  5.68 10,0 3023 15,11
19 530,2 8034,7 0.0
calc, 11,95  7.77 0,409 5,75 10,1 3284 14,06
exp. 8.39  3.17 0.658  7.86 14,1 5288 11,9
8 530.2 8036.6 9,21
cale, 4,902 3.77  0.665 9,57 15.4 5341 14,40
exp. 5.7 1,90 0,93 10,7 18,0 7511 11,46
11 530.2. 8042,2 17.81
cale, 2,59 2.37 0,996 14,2 21,8 8009 14,23
exp. 3.40 1,29 1,25 14,2 22,7 10166 11,36
15 530.2  8106.4 25,8

calc, 1,50 1.54 1,34 19,2 28,5 10820 14,39



801

SHOCK WAVE

Figure 1: Boundary Layer Coordinate System



601

0.7 7 l T T | 1 | |
0.6 |-
A
——— VANDRIEST INNER LAW =7
—— REICHARDT INNER LAW /////
05 = A COLES DATA M.=2.578 =7 =7
@ COLES DATA My~ 3.70I 2 2
COLES DATA M= 4.544 o Z
& = —
04 //
. | *” #*=COLES CASE 62
8, in. A /-// Mo =4.544
et
0.3 - //)//</‘//COLES CASE 20 /./"?J
/' Mm=3.70|’/
0.2 ’///’ ﬂ—“’ﬂi::::“’ﬂ’—‘ —
// COLES CASE 26 Mq=2.578
0.1 / /’ —]
”’M”
0 fadl | | L1 | n |
0 O 20 30 40 50 60 7O 80 90 100
X,in. ‘

Figure 2: Displacement Thickness for Flat Plates-Coles Data



08 |- e M= 3.70I

o ® x= 21 48in.

I Rego, x=354%10%
U

T 06 [
i EDDY VISCOSITY MODEL
I —-——— VAN DRIEST
o4 H ————— REICHARDT
02 L ©® COLES CASE 20
's) 1 ! 1 ]
0 ol 0.2 03 04
y, inches

Figure 3t Velocity Profiles for a Flat-Plate~Coles Data

110



30

L

1 IIITI—Ir i ITIIIIII 1 LA
| Meo=3.70!
25 -~  x=2148in. —
Reep, = 3.54x108
20 |- VAN DRIEST (1956)
® COLES CASE 20
wt 15 -
FAIRING OF
EXPERIMENTAL DATA
10 — —
EDDY VISCOSITY MODEL
5 e VAN DRIEST ~
——.—— REICHARDT
O | llllllll | Llllllll I P 1. 1111
10° 10" 10*
y+

Figure 4t Velocity Profiles for a Flat Plate-Law of the Wall

Variables=Coles Data

m

10°




cli

2.5 1 | T | ! T

EDDY VISCOSITY MODEL

2.0 ———— VAN DRIEST Mg = 3.70I
e — REICHARDT x = 2148
Rep= 3.54 x |10°

COLES CASE 20

(.0 ‘h‘l"“‘-"‘“-‘=a.gﬂu, -
.\.:m‘.é-.h\.
. Qhkﬁb.
<A,
05 | = _
"’"_,f-"“ﬂp
;—“‘M
AT R e TS 5
0 == | 1 1 | 1 !
0 10 20 30 40 50 60 70
G0 = -E—

Figure 5 Comparison of Eddy Viscosity Profiles for a Flat Plate-Coles Data



102 l T T T TT]
- I T T T T TT7
.

COLES EXPERIMENTS
- M

o
~ ® 3,701 CASE 20
B m 4.544 CASE &2
— A 2.578 CASE 26

1073

Lol

B PRESENT RESULTS
EDDY VISCOSITY MODEL

————— VAN DRIEST
------- REICHARDT
m.i 1 Lt 1t 11l 1 L L1 1111
10° 1ol
Rem,x

Figure 63 Skin-Friction Distribution for a Flat Plate~Coles Data

13




vii

FLOW

7.50 R

r =250

¥

30°

142

15°

r@» Z
r =1.85

ALL DIMENSIONS in.

L °=0.885

Figure 7¢ Nozzle Geometry-~Elliott, Bartz, and Silver Test Case




R=300psi , T,=4500°R , =65

CURVE et EL
| CEBECI! & SMITH
2 VAN DRIEST
3 jOP/DX|
4 REICHARDT
12 |
i
10 }
\
S A 4
\
8 -\
\\\ 2
7 \
\\\\ 3
m 6 ™
\\\\\\
5 |- N
_/\
\
4 | N
\\
3. L‘ \\ \\
\
\
2 - \
)
I - --—:5
0 i ! | | ! | 1
O 10 20 30 40 50 60 70 80
€+

Figure 83 Eddy Viscosity Profiles at Nozzle Throat-Elliott, Bartz,
and Silver Test Case

115




911

Po=300psi , To=4500°R

NOMINAL ENTRANCE CONDITIONS
CASE] ¢ A 8 ) 4
i 10 ol ol o ltoo j
20_|0.88[0.201]0.022[0.024] 1.0 |
2b [0188] O [0.0I8] 0 | O |
|
28 T T T T T T 1 '
B THROAT
29 — /) —
@x /1)
5 AN
8 20 /éﬂ \\ —
[
"
£ 16 —
oo J
~
f1a)
* {2 ]
o
Zg 8 N
N~
4 - —~——ELLIOTT, BARTZ, & SILVER
PRESENT RESULTS
0 I I LM I S l
O Ol 02 03 04 05 06 07 08 09 10

Figure 9: Heat Transfer Distribution Along Nozzle Wall-Elliott, Bartz, and Silver Test Case !

Z/L



L11

Po = 300psi, To = 4500°R

NOMINAL ENTRANCE CONDITIONS
CASE | 5 A g 3 &
| 0 0 0 0 .00
2a_| 0188 0.201 | 0,022 | 0.024 | 1.0I
2b _lot88] 0 lo.08f O 0
0.28 T 1 l 1 ; I |
0.24 -
——— ELLIOTT, BARTZ, & SILVER
0.20 —— PRESENT RESULTS -
/7
0.16 \\\ g
8, in \\\ iy
] \ 7 /
0.12 \ \ THROAT i
0.08
0.04
0
O Ol 02 03 04 05 06 07 08 09 10

Z/L

Figure 10: Boundary Layer Thickness Distribution for a Nozzle-Elliott, Bartz, and Silver
Test Case



8l

0.024

- l I T [ l l I

|
\\
B NOMINAL ENTRANCE CONDITIONS _ _
0.020 \\ CASE| 5 | A | 8 | ¢
a | L 0 |0 | 0 [ o [1oo
0.016 2a_0.188 |0.201 |0.022/0.024] 1.0 =
\\ 2b_10.188] O |0.018] 0 | O
0.012 -\ -
\ —— PRESENT RESULTS
0.008 ~—— ELLIOT, BARTZ & SILVER B
8 in ~ \ 2b Po = 300 psi
0.004 |\ N THROAT T, = 4500°R >
~0.004 |- Se2e e -
|
—0.008 R N NN TR | EN R B S
O o1 02 03 04 05 06 07 0.8 09 IO
Z/L

Figure 11: Displacement Thickness Distribution for a Nozzle-Elliott, Bartz, and Silver

Test Case



6l1

0.032 | ! T I I I i ] ]

B = 300psi
0.028 [~ To = 4500°R -
———ELLIOTT, BARTZ, & SILVER
0.024 - ~ ——PRESENT RESULTS __
R NOMINAL ENTRANCE CONDITIONS
N CASE| 8 [ A | 8 | ¢ r
0.020 - \\ | 0 | 0 10 |0 [100 y,
R 2a 10.18810.201 [0.022/0.024| 1.0 yd
8,in 0.016 ~ \ \ 2b |0.188] O |0.018] O 0 /,/’ -
\ N\ s ’
\ s
0.012 THROAT
0.008
0.004
0

o) ol 02 03 04 05 06 07 08 09 10
Z/L

Figure 123 Momentum Thickness Distribution for a Nozzle-Elliott, Bartz, and Silver Test Case



ocl

4 | I l T I I | I I l
g’., ﬁﬂ 2" _é |5°

| D300 1

O | | | | 1 | ! |

0 2 4 8 iO 12

Figure 13: Geometry for the NASA-Lawis Nozzle

|
6 .
Z, |

n.



lel

10° — Oy

[ LS I D O ) | - 1 L) LR ILUIRIL I:
. -
10 &= -{
. o—OEXPERIMENTAL ]
b - -——1~-D EXPANSION .
/p - .
o
o2 - P, = 300 PSIA .
- T, = 9T0°R E
C i
- .
lO-B L] i 1L Lt |J_l [ 1 S N T l | i | IS T I Y I |
107 10° 0" lo**

Z

Figure 14¢: Pressure Distribution for the NASA-Lewis Nozzle



(44}

900

800

x 700

?

600

500 -

To=970°R

| l L

O

AV

H

6
Z,1n.

Figure 15; Wall Temperature Distribution for the NASA-Lewis Nozzle

I2




£zl

ﬂ
@)
x
S
D

(0]
O
X
@)
ES

40X10*

20Xx10™*

HEAT -TRANSFER COEFFICIENT
BASED ON ENTHALPY. h, , IbAin2)(sec.)

T l T : T
(A/8) 20

= '-00} THEORY
—-— .01} Cf=Cf,ad

—— PRES. METHOD

EXPERIMENT
P, = 300 PSIA

T, = 970°R

4 6 8 10 12
AXIAL DISTANCE ALONG NOZZLE,Z, in.

Figure 16¢ Heat Transfer Distribution for the NASA~Lewis Nozzle



vel

r*-0.055 in

THROAT
X/ r¥=10.30

I |

Filgure 17:

16

20 24

X/ r*

Geometry for the AEDC Hotshot-Nozzle

28

36



T4

7000 1 1 1 | T I i | —\—
-
ms- TIME IN MILLISECONDS

To = 5400°R T

Po = 11,500 psi

THROAT

1000 |- =
0 ! | | | l | ! L | |

fb,
O 10 20 30 40 50 60 70 80 90 2000
z/r®

Figure 18: Wall Enthalpy Distribution for the AEDC Hotshot-Nozzle



9zl

& P, MEASUREMENT
o P DEDUCED FROM P MEASUREMENTS

Po = 11,500 psi

LOG o (P/P)
L
1

| | ]
o) 500 1000 1500
z/r*

Pigure 19t Pressure Distribution for the AEDC Hotshot-Nozzle

2000



al

N L B : I LA § AN I
X 8153 ] [ — VANDREST T,/ Ty 201257 ] F
- 2/t7=1743\ [ ——~ REICHARDT srs L
i Ty/To= 0249 , w1045y 4 I Po* 11,500psi 520,50 -
- Z/r =70 ) v L To® 5400°R = F
B2064 o y * 1.4 =~ -
o - e - - . -
L - / ///
vy g 2y,
10 22223 4 £ 77 \z/r%s 2543 — w/To* O. i
M 1F T/ Ty 0.533 3 » // Tyl To* 0.438 = g=le8 :
- *9.35 - - 4.47 . .
; ] 11 - ] e, ]
b -4 -~ T 0. 7
7 ] y g=8.70 .
a I ! ) } L | . | L ! L | 1 |
o 100 200 300 0 100 200 300 o 100 200 300
A e* et
Figure 203 Eddy Viscosity Profilas for the AEDC Hotshot~Nozzle




8¢l

Figure 21:

IT)
w —
7
[}
o~
-
w
\ ———
E i
~ -
.c -
— Po = 11,500 psi -
- To= 5400°R .
y =14
2 I Lol { ) R
10 :
|0° 10! 102

z/r®

Heat Transfer Distribution for the AEDC Hotshot=Nozzle



6Tl

I 1 } T ] I T T
_ VAN DREST EDDY-VISCOSITY
A REICHARDT: LAW
Po = 11,500 psi
- To=95,400°R —1
y =14
r. -]
L L I ! | | !
o) 20 30 40 50 60 70 80 90 I00O

z/r*

Figure 22¢ Displacement Thickness Distribution for the AEDC Hotshot~Nozzle



oclL

2400 —T ' , ,
z
| EDDY VISCOSITY LAW
2000 | ,' ———— VAN DRIEST -
) RICHARDT
n
2 |
o !
= 1600 |- | .
pt [
(8.
ul |
= ]
l:Z()() "‘ —
[T
() |
g {
< 800 ¥ N
N
X [
b= |
(@] | ]
© 400 [ -
W
0 1 ! |
0 400 800 200 1600
2/1 ¥

Figure 23:

Number of Iterations Required to Obtain a Converged

Solution



SRR . ) | .
X e e M

LEL

Ste x10*

Figure 248 Skin Friction Distribution for a Flat Plate-Hironimus' Data Case I

— PRESENT METHOD

—~—— FULLY TURBULENT

—— FULLY LAMINAR ®
Mep = 6.928 _
To = 6082°R °
Ty=533°R "

i ®

@® EXPERIMENT =~

Re, X107¢



zel

| | | - T !
® EXPERIMENT ——— FULLY TURBULENT
R —— FULLY LAMINAR
6L T~~___ ©® ® PRESENT METHOD
T, = 4233 °R T g
Tu= 533°R | ® o L o--
o 4t ©“eoce -
x
*ib
P oL ® .
0 L | | 1 | |
2 4 6 8 10 20 40
Rey X 107

Figure 25:

Skin Friction Distribution for a Flat Plate-Hironimus' Data Case II



£el

Figure 263

1 1 1 ! | | 1 } i 1

O 5 {0 15 20 25 30 35 40 45 350
z/r,

Geometry for a 10° Half-Angle Hyperboloid-AGARD Case A



vel

Figure 27%

\
lO' T T T B T T T T T T 7177

| S S S B |

PRESSURE DISTRIBUTION -
- - MODIFIED NEWTONIAN
THEORY

To = 6996°K
P/ = 6.0352 ATMS
Mg = 20.178
ALTITUDE = 100,000ft. |

10°

i
2 )|11||

10

¥
-1

|0'2 ) + a1l 1 Lo el 3 L1111t
0™ 10° Io* 10*®

S/rﬂ

Pressure Distribution for a 10° Half-Angle Hyperboloid-AGARD Case A



0.09 : , - —_— —— ;
AGARD CASE A

i 008 - 100,0001t/20,000ft/sec. _
| | Tw=1400K
| ]
0.07 - PRESENT METHOD N
PERFECT GAS (y=14) ..~ ADAMS
0.06 - =" PERFECT GAS |
P, =6.0352 ATMS (y=14)
T, =6996°R

. 005 F Rep= 2157943 /FT
S Mg = 20.178

0.04

BLOTTNER,NEQ,NCW

Sel

BLOTTNER,NEQ,ECW

0.03 |- PRESENT METHOD EQUIL ]
/:4—”// )
SMITH,NEQ  __

0.02 |- ..:=:=;;:sr ’,,,,ﬂilf = —C

—
s

0.0l < |
- \— SCHONAUER EQUIL
0 1 i . } i | { |
0 0 20 30 40 50
S/,

Figure 281 Displaéement Thickness Distribution for a 10° Half-Angle Hyperboloid-AGARD Case A




9€l

107

|
!

CTITTTTTTT r| |

T TTT1
\
/

I

\ .,

107

O
a
T T T T \

BLOTTNER, NEQ,NCW or ECW

PRESENT METHOD
EQUIL

SCHONAUER EQUIL

lli\llll !

AGARD CASE A

._100,000ft/20,000ft/s¢ec.

ADAMS PERFEC)T

PERFECT GAS

PRESENT METHOD
\i (y=1.4)

R

T

I O e |

B = 60352 ATMS SN
T, = 6996 °R ~
Rep = 2157943/FT |
Mg = 20178
IO.4 ] { LIJI_III { LL!lIllJ | ] { |
10? | 10
S/

Figure 29: Skin Friction Distribution for a 10° Half-Angle Hyperboloid-AGARD Case A



lo-' L I T T T TT1 q T | T T7TTTT l T =T LI 1]

- AGARD CASE A b

| 100,000 ft/20,000ft/sec. .

i BLOTTNER, NEQ, ECW i

——PRESENT METHOD EQUIL ]

- SMITH, NEQ 7

1072 — : ]

- N :

" _>\ i

- PRESENT METHOD— "\ 1

St - | PERFECT GAS (y=14) \ .

ADAMS AN R

PERFECT GAS (y=1.4) AN

10 — —]

- Py = 6.0352 ATMS .

R T, = 6996 ° R \ .

I Res 2157943 /F T AW i

I Mg 20.178 ~ T

B ]

0™ Loyl vyl L Ll 11111
0™ | 10 10

S/t

Figure 30¢ Stanton Number Distribution for a 10° Half-Angle
Hyperboloid=AGARD Case A

137




8elL -

13.2 —

r
T 0
-13.2

0 99565
Z/m

Figure 31t Geometry for a 5° Half-Angle Spherically~-Blunted Cone



6¢l

loo = | i lrlrlll erlnl 1 | ﬁ]{lll T t© t U111 I I lllll:
- .
- i
=}

oE E
N :
I 4
0% = o =
= R = 334.645 PSIA 3
= Mo = 19.564 E
B ALTITUDE = 70,000FT i

|03 Lol Lol C ol Lo oapod o

107 10" 10° 10" 10 10°

S/t

Figure 32¢ Pressure Distribution for a 5° Half-Angle Spherically=-Blunted Cone



10° I
TTTIm] T T T II] T T TTTTE
- —
. L
= .
v
| L~
10" =
u y
o y
8 gel . Po = 334.645 PSIA |
o E Mo = 19.564 =
= T, = 392.5°R -
— Ty = 1000°R =
| Reo= 8.898x10%/ft, |
i ALTITUDE = 70,0004,
,' —— EQUILIBRIUM 7
g% L I/ ~——y = 1.165 _
SN ——y = 1.4 3
C ]
1o NIRRT R N R AET] B NN
10° 10' | 10° 10°

S/l'n--

Figure 33: Displacement Thickness Distribution for Laminar Flow Over
a 5° Half-Angle Spherically-Blunted Cone

140



0 E T T I T T 1T T T T
= -
) y

1.0 — ,/,f—_

10" =

3" n ."/
T t /'/!
nor S —— EQUILIBRIUM
y —— = 1185
/ ———y=1.4

(0% / ' —
= Py = 334.645PSIA =
— Mg = 19.564 —
oy To = 392.5°R 7
L Y; Tw = 1000°R .
| ] / Re,= 8.898x%10%ft."

P ALTITUDE =70,000ft.
H ]

1631/ =
=i -
=1 =
= ! -
- I

i _
- 1 —
|
S -

1o IR N R AT N N N R

1.0 10 10? 10°
S/

Figure 34: Digplacement Thickness Distribution for Turbulent Flow
Over a 5° Half-Angle Spherically-Blunted Cone

141

S ——



a4}

L T ¥ lllll] v L) "Tl‘[ll LANBREL) AJ llTll' 1] o rrryrrrt
1ot L P/ = 334.645 PSIA
: Mo = 19.564 =
- Rep= 8.898x|0%/FT
I ALTITUDE = 70,000FT
I TURBULENT “
F dio
\
- \ =
C L/ '
- - ’ \\}\
To = 3925°R N\ . LAMINAR
0% Ty = I000°R ~ o Hl02
\ e, -
— s N ]
r=1165 \\\\\ ]
—— r=l4 \\\':"\.\
—— EQUILIBRIUM T
\\\.\
1 3 aaal i ] et el J.Lllllllll i 1 EM.\ lO"3
10" 109 10! lo2 103
S/th

Figure 35: Skin Friction Distribution for a 5° Half-Angle Spherically-Blunted Cone



el

1 ¥ IIIIIIT T rlllll1l ) L) L B I I

334645 PSIA
19.564

392.5°R
I00Q°R $
8.898x10%/ FT

TURBULENT
L —E——————

ALTITUDE = 70,000FT  |O"

0"

&'
" % 14 un

@ e o S &

St

———

-
10* -

L

-

k

I~

10° - LAMINAR - 10?%

—_———p -

—_—y F 1.165 i 3

ey = .4 :

% — EQUILIBRIUM iy
-1 1 lJlllll 1 i 1 IIIIII [ LJJII[I[ } '0-3
|0 10 10! 10* 10*
S/

Figure 36%¢ Stanton Number Distribution for a 5° Half-Angle Spherically-Blunted Cone



oL

Pl

T [ llll"( T L llllll[ T T ll‘llll[

334.645 PSIA

l0* £ Mo = 19.564
_ T, = 392.5°R
: Ty = I000°R

TURBULENT
—

Rep= 8.898xI0¢/FT

3103
(77]
o
[T
> ===
o
‘@ o2 |- LAMINAR 4
—_— 5
———y = 165 :
S~ Trs 4 N ]
—— EQUILIBRIUM \ .
bt raruad 1 o ad N e O T
To} 10° 10! |o® {0
S/r, .

- 4
110

103

10®

Figure 37: Heat Transfer Distribution for a 5° Half-Angle Spherically-Blunted Cone



141

| EQUILIBRIUM N,
PRESENT RESULTS
0.6+ Po= 11,900 psi

% | To= 5400 °R T
0.4 L‘ ”./"’/’ =
_—=""""—ELLIOTT-BARTZ-SILVER
0.2h INTEGRAL METHOD _
O |

; i i 1 { ]
O 50 100 150 200 250 30C 350 400
z/r"

Figure 38¢ Momentum Thickness Distribution for the AEDC Hotshot=Nozzle



vl

22() ! RS f ] T l T T
[ —— ELLIOTT-BARTZ- SILVER

16 — — PRESENT RESULTS E
s | EQUILIBRIUM N,
=121 Py = 11,500psi

and | T = 5400 °R

2_ gt VELOCITY THICKNESS
'rﬂ
a4l
0L— - '
O 100 200 300 400

Figure 39: Boundary Layer and Displacement Thickness Distribution for the AEDC Hotshot-Nozzle



LT TTTT T TTTTIT] b T TTTTT

10 /\_?:T%

Ll

L IS -
107 = - ~PRESENT RESULTS
S — -
l(}_), ead -~
+ ELLIOTT - BARTZ ~SILVER ~
L INTEGRAL METHOD
i -
2D
~
2102 — —
G — 3
_ EQUILIBRIUM N, _
- P, = 11,500 PSI ~
To = 5,400°R . 60%
10

I lllllll

I
il

l L il vl L i

I 10 102 10>
z/r*

Figure 403 Heat Transfer Distribution for the AEDC Hotshot-Nozzle

147




8yl

_ ENKENHUS -MAHER

CROCCO ENTHALPY

| | | |

ELLIOTT-BARTZ-SILVER

POWER LAW VELOCITY
- AND ENTHALPY PROFILES

PROFILE
\ \_
=

I

EQUILIBRIUM N,
Z2/r* 984 Po= 1,500 psi
To°5400°R

PRESENT METHOD

| | | |

0 I

2 3
P/ P

Figure 41: Density Profiles for the AEDC Hotshot~Nozzle



671

0.05 !
. 00463 ME" e

Z = 0.04631‘—?3@'2;0213

0.04 - EQUILIBRIUM N,
Po = 11,500 PS

3* —

Z o

0.02 ~ ~
|

001 - / : -o. ~

/ 6\)‘\6‘/ ‘%*' 049 (Reref_)
/‘/ PRESENT RESULTS
o ) 1
o 1000 2000
z/r*

Figure 42: Comparison of the Predicted Displacement Thickness Distribution with Other
Methods Using Both Momentum and Energy Equations~AEDC Hotshot-Nozzle



051

EQUILIBRIUM N,

—— PRESENT RESULTS (q) Po = 11,500ps;
——— EDENFEELD’S RESULTS T, = 5400 °R

100 I I T I | l T T T

& P, MEASUREMENT (O)EMOMENTUM EQUATION ONLY
80 @ P/ MEASUREMENT  LCROCCO ENTHALPY DISTRIBUTION

, 80T SKIN FRICTION LAW o=
3" (a) | VAN DREST (von KARMAN_SIMILARITY)
BLASIUS (COMPRESSIBLE ) e
40 ELLIOTT - BARTZ- SILVER ® i
- 2 AXISYMMETRIC
20 S i

= ,\ ELLIOTT -BARTZ-SILVER
INTEGRAL METHOD

L | L | 1 I L ]

o 400 800 1200 1600
7/ r*

2000

Figure 43t Comparison of the Predicted Displacement Thickness Distribution with Other Methods

Which Use the Momentum Equation Only-AEDC Hotshot-Nozzle



sl

4 T T T 7 T T T TTTTT

3 |
2 -
s -
a
)=
o
9 0 -
P, = 58522 PSIA
To= 10%°K EXIT
-l = —— EQUILIBRIUM AIR Mg = 10.62 -
—— EQUILIBRIUM N, Mg = 13.69
ol ——PERFECT GAS N, Mq=21.64
-3 BN EERY Lot aaal L
-l j 0 |
10 | 10 . 10 | 10

Z,in

Figure 443 Pressure Distribution for the AEDC Nozzle ConfigutationhPo = 58,522 PSIAj
T, ™ 10,000°K



!Oe___ T 1 T VT 1 13% l] T ] L L] ll' -
X ]
10%K —
fnuli 10* -
—(
n 1
E -—
B i
.o y
10°- \\ -
- A\ 3
: \\ -
L IDEAL N, & AR i
. P, = 58522 PSIA i
T, = 10,000°R
0% -
C \ ]
- \ -
LAY
= \ \ -
,
= 4
\
\ \\
lO L (] I ILL i | 1 i 111 l' \
10 02 103
z/r"

Figure 45: Heat’Transfer Distribution for the AEDC Hotshot-Nozzle
Configuration-P = 58,522 PSIA; T° = 10,000°K

152



io®

— [ ll]llll. [ lTl”Il t T TTTTTR
10" |- —
= 3
_ N
- -
1.0 |— —
Sty [ ]
i Po = 58522PSIA  \\ ]
o To =10,000°R |
- EQILIBRIUM AIR ?\(\ =
— \ K —d
- EQILIBRIUM N, .
- IDEAL N, and AIR -
= E
I ~
- =

- .

Wy

- \

\

\

16 NI AN N Y
0" I0® 10®

Z/r"

Figure 46: Stanton Number Distribution for the AEDC Hotshot-Nozzle
Configuration-Po = 58,522 PSIA; T, = 10,000°K

153




P 1T T T 1T T T 1T 17T T 171
I.O — 4 h-di—a - ¥ G G o 5V —_
ad 2 | RUN 19
N - Cq * 0.0
A " A
0-8 —'1 . . S—r—f _—
A NS RUN 8
A a2 Cq = 000092
0'6 M ‘ ‘ A A A A LISy % b
A Ad & RUN 1
st ud Ca = 00001781 |
04T N s & a &
A
, A 4 RUN 5
5 o2 , A Cq= 000258 —
3 [ A
. .
o ‘ . —
I A
[* &  EXPERIMENT
oll 4 ——— CALCULATIONS — ]
: FULLY TURBULENT
I aof x*530.2mm

Cq= PwVw/Pele"

— |
o i
: 8 10 12 14 16 18 20 22 29 26 28 30

B
1 11 S D T N N O N I
0 2 4 6

Y {mm)

Figure 47: Velocity Profiles for a Flat Plate With Mass Injection-
Danberg's Data

154




gslt

Figure 48¢

102

Stanton Number Di

stribution for a Flat Plate-With Mass Injection-Danberg's Data

:"“ 1 T lllﬁrll T ] — 1T T 1]
B (DANBERG EXPERIMENTAL DATA, NOMINAL VALUES ]
i 'RUN NUMBERS| 16-19 ] 5-8 | 9-11 [ 12-15 ]
i SYMBOL = ° A Y |
i Me 6.4 | 6.5 | 6.4 ] 6.24 -
LWAR 431 | 4.17 ]| 3.94] 3.73
- OwVw/PeUg X103 0.0 | 9.09] 17.0 | 25.0 .
C = q CALCULATIONS |
My Ug(H,-Hy) ——— LAMINAR
~—— FULLY TURBULENT
—
.
o’



941

*ep 'smaN j10dmaN ‘Two)
21 — 1161 ‘AordueI-vSVN

102 - T T T T T T T T
_ | DANBERG EXPERIMENTAL DATA, NOMINAL VALUES | ]
B RUN NUMBERS | 16-19 | 5-8 | 9-11 [ 12-15|
» SYMBOL m | ® | A & ]
! Me 6.4 | 6.5 | 6.4 | 6.24 | |
Tw/Ty 4.3 1417 13.94 [3.73
- wVw/Pe Uex 104 0.0 |9.09[17.0 [25.0] -
IR
RUN 19
O 10° |~ .
- CALCULATIONS | .
| ——— LAMINAR } -
- —— FULLY TURB- | .
ULENT ) _
0\
| ! -
. ]
,0'4 | t 1 |
10° 10’

Figure 49: Skin Friction Distribution for a Flat Plate With Mass Injection-Danberg's Data



